Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Work safety is a key element in the design and maintenance of industrial workplaces and processes. This article examines occupational safety and the reliability of the human factor in the role of a plastic injection molding machine operator. Analyzing the work process and the dangerous, harmful, and burdensome factors present in the environment and workplace allowed for the identification of occupational hazards. Additionally, factors such as the frequency of threats, the likelihood of events, the possibility of avoiding and limiting damage, and the consequences of events were considered to conduct an occupational risk assessment according to the JSA (Job Safety Analysis) method. Following this, human reliability was assessed by determining the probability of operator errors using the TESEO and HEART methods. Finally, the possibility of using selected immersion techniques on the results of the research was discussed. The research methods and tools used in this study included a literature review and analysis, observation, interviews, and inference.
Czasopismo
Rocznik
Tom
Strony
art. no. 192112
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
autor
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Poland
autor
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Poland
autor
- Faculty of Mechanical and Industrial Engineering, Institute of Production Systems Organization, Warsaw University of Technology, Poland
autor
- Faculty of Transport, Warsaw University of Technology, Poland
autor
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Poland
Bibliografia
- 1. Lewczuk, K.; Żuchowicz, P. Virtual Reality Application for the Safety Improvement of Intralogistics Systems. Sustainability 2024, 16, 6024. https://doi.org/10.3390/su16146024.
- 2. Ross, R.; Pillitteri, V.; Graubart, R.; Bodeau, D.; Mcquaid, R. Developing Cyber-Resilient Systems: A Systems Security Engineering Approach; NIST Special Publication 800-160, Vol. 2 Rev. 1; U.S. Department of Commerce: Washington, DC, USA, 2021. https://doi.org/10.6028/NIST.SP.800-160v2r1.
- 3. Holuša, V.; Vaněk, M.; Beneš, F.; Švub, J.; Staša, P. Virtual Reality as a Tool for Sustainable Training and Education of Employees in Industrial Enterprises. Sustainability 2023, 15, 12886. https://doi.org/10.3390/su151712886.
- 4. Ji, Z.; Wang, Y.; Zhang, Y.; Gao, Y.; Cao, Y.; Yang, S.-H.; Integrating diminished quality of life with virtual reality for occupational health and safety training. Saf. Sci. 2023, 158, 105999. https://doi.org/10.1016/j.ssci.2022.105999.
- 5. Rudyk, T., Szczepański, E., Jacyna, M.: Safety factor in the sustainable fleet management model, Archives of Transport, Polish Academy of Sciences Committee of Transport , vol. 49, nr 1, 2019, s. 103-114, DOI:10.5604/01.3001.0013.2780
- 6. Murawski, J., Szczepański, E., Jacyna-Gołda, I., Izdebski, M., Jankowska-Karpa D.: Intelligent mobility: A model for assessing the safety of children traveling to school on a school bus with the use of intelligent bus stops, Eksploatacja i Niezawodność, Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne, vol. 24, nr 4, 2022, s. 695-706, DOI:10.17531/ein.2022.4.10
- 7. Wasiak, M., Jacyna-Gołda, I., Markowska, K., Jachimowski, R., Kłodawski, M., Izdebski, M., 2019. The use of a supply chain configuration model to assess the reliability of Logistics processes. Eksploatacja i Niezawodność – Maintenance and Reliability 21, 367–374. https://doi.org/10.17531/ein.2019.3.2
- 8. Kłodawski, M., Jacyna-Gołda, I.: Work safety in order picking processes, W: 19th International Conference Transport Means 2015. Proceedings / Kersys Robertas (red.), TRANSPORT MEANS, 2015, Kaunas University of Technology, s. 310-316
- 9. Zabielska, A., Jacyna, M., Lasota, M., Nehring, K., 2023. Evaluation of the efficiency of the delivery process in the technical object of transport infrastructure with the application of a simulation model. Eksploatacja i Niezawodność – Maintenance and Reliability. https://doi.org/10.17531/ein.2023.1.1
- 10. Palega, M. (2021). Application of the job safety analysis (JSA) method to assessment occupational risk at the workplace of the laser cutter operator. Management and Production Engineering Review, 12(3). http://dx.doi.org/10.24425/mper.2021.138529
- 11. Jacyna M., Lewczuk K., Kłodawski M. Selected aspects of modelling forklifts velocity and work safety, W: 10th International Conference "Managegement of Technology Step to Sustainable Production" / Predrag Cosic (red.), Management of Techology Step to Sustainable Production, 2018, Croation Association for PLM, s. 1-9
- 12. Directive 89/391/EEC - OSH "Framework Directive" of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work - "Framework Directive"
- 13. Directive 2009/104/EC of the European Parliament and of the Council of 16 September 2009 concerning the minimum safety and health requirements for the use of work equipment by workers at work (second individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC); OJ L 260, 3.10.2009, p. 5–19.
- 14. Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC; OJ L 157, 9.6.2006, p. 24–86
- 15. Rączkowski, B. (2022), Occupational health and safety in practice, Center for Consulting and Staff Development (in Polish: BHP w praktyce, Ośrodek Doradztwa i Doskonalenia Kadr), Gdańsk. ISBN: 978-83-7804-771-1
- 16. Mullen, J., Thibault, T., Kelloway, E. K. (2024). Occupational health and safety leadership. In L. E. Tetrick, G. G. Fisher, M. T. Ford, & J. C. Quick (Eds.), Handbook of occupational health psychology (3rd ed., pp. 501–516). American Psychological Association. https://doi.org/10.1037/0000331-025
- 17. Górny, A. Ergonomics in the formation of work condition quality [in] A Journal of Prevention, Assessment and Rehabilitation, 2012, Issue 41, pp. 1708 – 1711. https://doi.org/10.3233/WOR-2012-0373-1708
- 18. Górny, A., Kowerski, A., Ostapczuk, M. Bezpieczeństwo i eksploatacja maszyn produkcyjnych [Safety and operation of production machines]. FORUM. Poznań 2009.
- 19. Famakin, I. O., Aigbavboa, C., Molusiwa, R. (2023). Exploring challenges to implementing health and safety regulations in a developing economy. International Journal of Construction Management, 23(1), 89–97. https://doi.org/10.1080/15623599.2020.1850201
- 20. Mrugalska, B., Kawecka-Endler, A. Practical Application of Product Design Method Robust to Disturbances. Human Factors and Ergonomics in Manufacturing and Service Industries, 2012, Issues 22, pp. 121 – 129. https://doi.org/10.1002/hfm.20200
- 21. Grabarek, I., Bęczkowska, S. (2012). Analysis of factors determining ergonomic conditions of driver’s workplace and safety in transport of dangerous goods. Archives of Transport, 24(3), 297-306. https://archivesoftransport.com/index.php/aot/article/view/543
- 22. Grodzicka, A., Plewa, F., Krause, M., Figiel, A., Rozmus, M. Selection of Employees for Performing Work Activities in Currently Used Ventilation Systems in Hard Coal Mining. Energies 2022, 15, 408. https://doi.org/10.3390/en15020408
- 23. Krause, M. Hazards and occupational risk in hard coal mines – a critical analysis of legal requirements, IOP conference series, Materials engineering. 2017, Volume 268, edition 1. https://doi.org/10.1088/1757-899X/268/1/012013
- 24. Wieczorek, S., Żukowski, P. Organizacja bezpiecznej pracy. Tarbonus, Kraków-Tarnobrzeg 2014.
- 25. Romanowska – Słomka, I., Słomka, A. (2023) Risk assessment. Tarbonus (in Polish: Ocena ryzyka zawodowego. Tarbonus), Kraków-Tarnobrzeg. ISBN 978-83-7394-267-7
- 26. Palega, M., Krause, M. (2020). Identyfication and assessment of occupational hazards in the working environment of the laser cutter operator. System Safety: Human-Technical Facility-Environment, 2(1), 121-130. https://doi.org/10.2478/czoto-2020-0015
- 27. Palega, M. (2020). Assessment of technical safety of employees during the operation of the laser cutter. System Safety: Human-Technical Facility-Environment, 2(1), 131-141. https://doi.org/10.2478/czoto-2020-0016
- 28. Kosmowski, K. T. Niezawodność człowieka: Zapobieganie stratom w przemyśle (red. A.S. Markowski): część III „Zarządzenie bezpieczeństwem procesowym”, rozdz. 5. Wydawnictwo Politechniki Łódzkiej, Łódź 2001.
- 29. Kosmowski, K. T. Human reliability analysis in the context of accident scenarios. Journal of KONBiN 3(6)2008. https://doi.org/10.2478/v10040-008-0074-y
- 30. Bell, J. H., Rewiew of human reliability assesment methods, Healtans safety executive, 2009.
- 31. Żywiec, J., Tchórzewska – Cieślak, B. (2023), Comparison of selected methods for assessing the reliability of the operator of technical systems on the example of a collective water supply system (in Polish: Porównanie wybranych metod oceny niezawodności operatora systemów technicznych na przykładzie systemu zbiorowego zaopatrzenia w wodę), Instal, nr 5, s. 42-48.
- 32. Rak, J., Tchórzewska-Cieślak, B., Żywiec, J.: The human reliability factor in water supply systems (in Polish: Czynnik niezawodności człowieka w systemach zaopatrzenia w wodę), Instal, 2019, nr 3, 40-43
- 33. Balážiková, M., Salaj, L., Wysoczańská, B. (2019), Analysis of Human Factor Reliability in Workplace with Noise Load, IEEE, https://doi.org/10.1109/ICTEP48662.2019.8968962
- 34. Vargová, M., Salaj, L., Jurč, D., Chomová, K., Balážiková, M. (2020), Impact of Noise Exposure on the Reliability of the Human Factor in the Production Hall, Acta Mechanica Slovaca 24 (1): 40 – 47, https://doi.org/10.21496/ams.2020.012
- 35. Bell, J., Holroyd, J. Review of human reliability assessment methods”, Health and Safety Laboratory for the Health and Safety Executive (HSE), Buxton, Derbyshire 2009.
- 36. Wilson, J. R., Corlett, N.E. Evaluation of Human Work. Taylor and Francis, London 2005. https://doi.org/10.1201/9781420055948
- 37. Chang, C.-H., Kontovas, C., Yu, Q., Yang, Z. (2021). Risk assessment of the operations of maritime autonomous surface ships. Reliability Engineering & System Safety 207, https://doi.org/10.1201/9781420055948
- 38. Zhang, M., Zhang, D., Yao, H., Zhang, K. (2020). A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration. Safety science 130, 104838
- 39. Taverna, D., Pereira de Abreu, M., Martins, M. R., Coelho Maturana, M., Montewka, J., Ramos, M.A., (2023), Review of human error assessment methods suitable for the design of maritime remote control rooms and processes, European Safety and Reliability Conference (ESREL 2023), doi: 10.3850/978-981-18-8071-1_P644-cd
- 40. Maturana, M.C., Martins, M.R., Ferreira Frutuoso e Melo, P.F., (2021), Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system, Reliability Engineering & System Safety Volume 216, https://doi.org/10.1016/j.ress.2021.107989
- 41. Kirwan, B. Safety Informing Design. Safety Science, 2006, 45, 155-197. https://doi.org/10.1016/j.ssci.2006.08.011
- 42. SPAR-H: Human Reliability Analysis (HRA) Method, NUREG/CR-6883, INL/EXT-05-00509, USNRC, 2005
- 43. Evangelista, A.; Manghisi, V.M., Romano, S., De Giglio, V., Cipriani, L., Uva, A.E. Advanced visualization of ergonomic assessment data through industrial Augmented Reality. Procedia Comput. Sci. 2023, 217, 1470–1478. https://doi.org/10.1016/j.procs.2022.12.346.
- 44. Wetzel, C., Lungfiel, A., Nickel, P. BGHW Warehouse Simulation–Virtual Reality Supports Prevention of Slip, Trip and Fall (STF) Accidents. In Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management: 14th International Conference, DHM 2023, Proceedings, Part I; Springer: Cham, Switzerland, 2023; pp. 276–289. https://doi.org/10.1007/978-3-031-35741-1_21.
- 45. Runji, J.M., Lee, Y.-J., Chu, C.-H. Systematic Literature Review on Augmented Reality-Based Maintenance Applications in Manufacturing Centered on Operator Needs. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 567–585. https://doi.org/10.1007/s40684-022-00444-w.
- 46. National Safety Council. Injury facts. Available online: https://injuryfacts.nsc.org/glossary/ (accessed on 11 May 2024).
- 47. Caggianoa, A., Grantc, R., Peng, Ch., Lid, Z., Simeone, A., Manufacturing Process Impacts on Occupational Health: a Machine Learning Framework. Procedia CIRP 112 (2022) 561–566. 10.1016/j.procir.2022.09.100.
- 48. Özkan, E. K., Ulaş, H. B., Comparison of four machine learning methods for occupational accidents based on national data on metal sector in Turkey, Safety Science, Vol. 174, 2024, 106468. https://doi.org/10.1016/j.ssci.2024.106468.
- 49. Karkula, M., Mazur, R., The use of novel computational methods in forecasting the demand for electrical power – starter battery production case study. Proceedings of the International Conference on Automotive Industry, pp. 92, ISBN: 978-80-7654-080-4
- 50. Govindan, A. R., Li, X., Fuzzy logic-based decision support system for automating ergonomics risk assessments. International Journal of Industrial Ergonomics. Vol. 96, 2023, 103459. https://doi.org/10.1016/j.ergon.2023.103459
- 51. Xu, R., Kim, B. W., Moe S., J., S., Khan, A. N., Kim, K., Kim, D.H., Predictive worker safety assessment through on-site correspondence using multi-layer fuzzy logic in outdoor construction environments. Heliyon 9 (2023) e19408. https://doi.org/10.1016/j.heliyon.2023.e19408.
- 52. Jahanvand, B., Mortazavi, S. B., Mahabadi, H. A., Ahmadi, O. Determining essential criteria for selection of risk assessment techniques in occupational health and safety: A hybrid framework of fuzzy Delphi method. Safety Science. Vol. 167. 2023, 106253. https://doi.org/10.1016/j.ssci.2023.106253
- 53. Szaciłło, L., Jacyna, M., Szczepański, E., Izdebski, M., 2021. Risk assessment for rail freight transport operations. Eksploatacja i Niezawodność – Maintenance and Reliability 23, 476–488. https://doi.org/10.17531/ein.2021.3.8
- 54. Kirwan, B. The validation of three human reliability quantification techniques, THERP, HEART and JHEDI, Applied Ergonomics, 1997 Feb; 28(1):17-25.
- 55. Johannaber, F. Injection Molding Machines: a User's Guide. Carl Hanser Verlag Munich 2008.
- 56. Lin-Xiu Hou, Ran Liu, Hu-Chen Liu, Shan Jiang (2021), Two decades on human reliability analysis: A bibliometric analysis and literature review, Annals of Nuclear Energy, Volume 151, https://doi.org/10.1016/j.anucene.2020.107969
- 57. Dong-Han Ham, Jinkyun Park (2020), Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept, Reliability Engineering & System Safety, Volume 194, https://doi.org/10.1016/j.ress.2018.07.033
- 58. Rehan Farooque A, Mohammad Asjada, SJA Rizvi (2021), A current state of art applied to injection moulding manufacturing process – A review, Materials Today: Proceedings Volume 43, Part 1, https://doi.org/10.1016/j.matpr.2020.11.967
- 59. Frankler D., Zawistowski H. Konstrukcja form wtryskowych do tworzyw termoplastycznych. Wydaw. Poradników i Książek Techn. PLASTECH, Warszawa 2003.
- 60. Beaumont John P. Runner and Gating Design Handbook: Tools for Successful Injection Molding. Hanser/ Carl Hanser Verlag. Munich ; Cincinnati 2019. https://doi.org/10.3139/9781569905913.fm
- 61. Mohamed F. Alzoub., Ma’moun Abu-Ayyad, Development of a Finite Model for Controlling a Mold’s Open/Close Process in an Injection Molding Machine. Proceedings of IMECE20112011Nov 11-17, 2011, Denver, Colorado, USA. https://doi.org/10.1115/IMECE2011-62505
- 62. Khosravani, MR, Nasiri, S. i Reinicke, T. (2022). An intelligent, knowledge-based system that improves the injection molding process. Journal of Industrial Information Integration (in Polish: Inteligentny, oparty na wiedzy system usprawniający proces formowania wtryskowego. Dziennik Informacji Przemysłowej Integracja) , 25 , 100275. https://doi.org/10.1016/j.jii.2021.100275
- 63. Informacja o zawodzie. Operator wtryskarki (814208). Infodoradca + available: https://tiny.pl/c3pwr [01.02.2024]
- 64. Ramos, M. A., & Mosleh, A. (2021). Human role in failure of autonomous systems: a human reliability perspective. In 2021 Annual reliability and maintainability symposium (RAMS) (pp. 1-6). IEEE. https://doi.org/10.1109/RAMS48097.2021.9605790
- 65. Golestani, N., Abbassi, R., Garaniya, V., Asadnia, M., & Khan, F. (2020). Human reliability assessment for complex physical operations in harsh operating conditions. Process Safety and Environmental Protection, 140, 1-13. https://doi.org/10.1016/j.psep.2020.04.026
- 66. USNRC Good practices for implementing Human reliablity Analysis, US Nuclear Regulatory Commission, NUREG-1792, Washington DC 20555-0001, 2005.
- 67. Greenstreet B. Preventing the propagation of error and misplaced reliance on faulty systems: aguide to human error dependency. UK Health & Safety Executive, Offshore Technology Report 2001/053, HMSO, London 2001.
- 68. Veeresh Nayak, C., Manjunath Patel, G.C., Ramesh, M.R., Desai, V., Samanta, S.K. (2020). Analysis and Optimization of Metal Injection Moulding Process. In: Gupta, K. (eds) Materials Forming, Machining and Post Processing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-18854-2_2.
- 69. Pacyna A. (2020), Occupational health and safety management systems in accordance with ISO 45001:2018, Publishing House of the Rzeszów University of Technology (in Polish: Systemy zarządzania bezpieczeństwem i higieną pracy zgodnie z ISO 45001:2018, Oficyna Wydawnicza Politechniki Rzeszowskiej), Rzeszów. ISBN 978-83-7934-274-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b44c55b4-4691-487b-87e8-079a24f9ba9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.