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ABSTRACT: Collision avoidance is one of the high-level safety objectives and requires a complete and reliable
description of maritime traffic situation. A combined use of data provided by independent data sources is an
approach to improve the accuracy and integrity of traffic situation related information.

In this paper we study the usage of radar images for automatic identification system (AIS) and radar fusion.
Therefore we simulate synthetic radar images and evaluate the tracking performance of the particle filter
algorithm as the most promising filter approach. During the filter process the algorithm estimates the target
position and velocity which we finally compare with the known position of the simulation. This approach
allows the performance analysis of the particle filter for vessel tracking on radar images. In a second extended
simulation we add the respective AIS information of the target vessel and study the gained level of
improvement for the particle filter approach.

The work of this paper is integrated in the research and development activities of DLR Institute of
Communications and Navigation dealing with the introduction of data and system integrity into the maritime
traffic system. One of the aimed objectives is the automatic assessment of the traffic situation aboard a vessel
including integrity information.

1 INTRODUCTION

One of the important carriers of the worldwide
economy is the transport of goods and persons
realized by vessels. The harmonization of the
developments of electronic aids to navigation and
dedicated systems and services aboard and ashore the
International Maritime Organization (IMO) has
initiated the e-Navigation strategy to integrate
existing and new navigational tools, in particular
electronic tools, in an all-embracing system.

The risk reduction of accidents between ships as
well as ships and obstacles is the social goal
associated to safe shipping from berth to berth. The
technological goal covers the development of new

tools and methods to support the ship-side and shore-
side nautical staff during decision finding in
complicated and complex navigational situations.

Related to the Safety of Life at Sea Convention [1]
the primary source for collision avoidance and traffic
situation awareness is the radar system with the
opportunity to detect and track objects with the Radar
Plotting Aid (ARPA) functionalities [2].

With the implementation of the automatic
identification system (AIS) in 2004 an additional
important step was done to deploy a second measure
for ship-side and shore-side vessel tracking [3]. Like
almost every technologies, neither ARPA nor AIS can
be declared as an “altogether solution” and are
subject to specific restrictions and limitations. Because
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of the cooperative character of AIS data (disengage
able, dependent on the human initiated processes)
and the dependency on other onboard devices (as for
example the GPS receiver) there is still a margin for
errors in the data. Insofar the possibility cannot be
ruled out, that specific AIS data are wrong or not
meaningful during important maneuvers of a vessel.
An analysis of a comprehensive two month AIS data
set (January and February 2010) describing the vessel
traffic of the whole Baltic Sea [4,5] came to conclusion,
that specific parameters like Rate of Turn (ROT) as
well as Heading (HDG) deliver significantly defective
or implausible results. The radar on the other side is
an electromagnetic sensor used for object detection
via reflected radio waves to determine the range,
altitude, direction, or speed of objects. If the maritime
radar is installed with ARPA functionalities the
opportunity is given to derive tracks based on radar
targets. ARPA systems are able to calculate the
course and speed of tracked objects as well as the
closest point of approach (CPA) and time to closest
point of approach (TCPA) in relation to the own
vessel. The majority of ARPA systems integrate the
ARPA features with the radar display.

Previous studies of the maritime radar and the
ARPA system found that the ARPA drawbacks [6,7]
could be overcome with the use of the radar image
instead of distance and bearing calculated from
ARPA [8]. This paper propose and analyze the use of
a sequential Monte Carlo algorithm also known as
particle filter as a solution for radar target extraction
and tracking as well as radar and AIS fusion.

The monitoring and assessment of vessel traffic is
an important element of safe, secure and efficient
shipping and the protection of environment. The
collision and grounding avoidance at sea requires a
reliable and comprehensive picture of the maritime
traffic situation to enable an error-free decision
making for the seafarers. A combined use of data
provided by independent data sources is an approach
to improve the accuracy and integrity of traffic
situation related information. This paper focuses on
the usage of two-dimensional radar image data for an
improved target tracking in the frame of maritime
traffic monitoring. More precisely, the aim of this
paper is the analysis of a sequential Monte Carlo
method for radar target detection and tracking as well
as AIS and radar fusion. For this purpose the paper
simulates radar images and AIS data to test the
proposed filter algorithm.

The paper is structured in the following way: At
first in section 2 the strategy of study is discussed. In
the next part the scenarios and the generation of
synthetic images is described in section 3. Section 4
gives a very brief introduction into the used
sequential Monte Carlo method. In section 5 the
results are presented and section 6 discusses and
concludes the analysis of the results.

2 THE STRATEGY

Aim of this study is the performance analysis of the
sequential Monte Carlo method for target detection
and tracking in maritime radar image processing. The
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strategy of the study is illustrated in Fig. 1 and covers

4 steps.
Sensor Performance
Simulation Analysis

Figure 1. Systematic illustration of the strategy
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The first step of the study is the definition of the
test case scenarios. These scenarios are chosen such
that the performance of the tracking position accuracy
and the time to first detection of the target can be
estimated. After the definition of the test cases the
sensor data has to be simulated. This simulation
generates error free radar images as well as error free
AIS position data. After the data simulation the
sequential Monte Carlo method was used to estimate
the position of the target. The first position estimation
was done in a radar only mode. In a second stage the
method was used with radar and AIS data in a sensor
fusion process. The simulation environment has the
advantage that every parameter is precisely known
and the comparison of estimated and simulated data
is possible in order to determine the performance of
the used method. The final step of the study is the
analysis of results. During the analysis the accuracy of
the target position, extracted from the radar image,
and the time the algorithm needs to extract the first
position are estimated.

3 TEST CASE AND SENSOR SIMULATION

In this section we describe the test case scenarios and
the method used for radar image simulation. The
purpose of the scenarios is the performance
evaluation of the sequential Monte Carlo method for
maritime radar image processing.

The scenarios were designed to estimate the position
accuracy of the extracted target as well as the time the
algorithm needs to calculate the first position. The
simulations were done for static and dynamic echoes
with and without AIS data. The first test case is a
static radar echo without AIS position data. For this
scenario different target echo sizes were simulated
and the position accuracy as well the time to first
position fix was estimated.

The second test case is a dynamic scenario. In this
scenario the target echo moves with the velocity v on
a straight line starting from position so at time t=0
according the following equation.
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In the third scenario the AIS position as additional
information is added to the static test case. The AIS
position is simulated at the center of the radar echo
without any additional position noise. In the last
scenario the AIS position is as well added to the
dynamic simulation.



The following part describes the generation of
synthetic radar images, which are used as sensor
input in the test case simulations.

The generation of synthetic radar image is based
on data from a measurement campaign with the
vessel BALTIC TAUCHER 1I in the area of Rostock.
During this campaign the actual screen of the radar,
as the officer of the watch uses it, was recorded. The
radar images were extracted using a VGA to USB
grabber and then stored as a series of uncompressed
PNG-images. The use of the original image source
solves the challenge of time synchronization and
allows the simulation a realistic sensor performance.

One of these images from the BALTIC TAUCHER
II radar screen (Sperry Marine VISIONMASTER FT) is
shown in Fig. 2.
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Figure 2. The original RADAR image as taken from Sperry
Marine VISIONMASTER FT from BALTIC TAUCHERII.
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Figure 3. The simulated radar image with 5 elliptical targets
of different size and orientation

The generation of synthetic images can be
described as follows. The process starts with the
removal of the part of the image which contains the
radar echoes. After this process the synthetic image
consists only of the user interface and a filled black
circle. This was achieved by setting all pixel values
within a radius of 468 pixels around the center pixel
of (532,516) to zero. Note that this configuration is

specific to the radar device from Sperry Marine. After
the removal of the original data the synthetic radar
echo is added to the image as a filled yellow ellipse.
The use of ellipses for radar echoes is based on the
suggestion of [4] that radar echoes are well described
with elliptical parameters. The process is repeated for
every image received from the data stream. While the
removal of the original radar echoes is always
identical the simulated target will be plotted at the
position derived from the configured dynamic model.
In principle, this allows the generation of any possible
maritime scenario including near misses or even
collisions of traffic participants. In addition to the
simulation of radar echoes the software is possible to
provide AIS data for all simulated vessels. Please note
that the AIS dataset is derived from the simulated
radar echoes without any additional error on position
and velocity. Additionally we would like to point out
that the software is able to simulate targets with
elliptical shape, but the simulations were performed
with circular echoes of different sizes in order to
reduce the complexity of the interpretation of the
results.

The simulated images are all based on data from
the Sperry Marine VISIONMASTER FT RADAR, with
a range set to 3 nautical miles. This configuration of
the radar results in the Pixel size 11.87 meters.

4 SEQUENTIAL MONTE CARLO SAMPLING:
PARTICLE FILTER

The paper studies the use of the sequential Monte
Carlo method for the position estimation of a target
vessel from radar images and AIS position data. The
reason for choosing the particle filter as the algorithm
of choice is based on previous analysis of AIS and
radar sensors [8,9,10].
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Figure 4. Illustration of the particle filter process taken from
[11]

Figure 4 illustrates the concept of the sequential
Monte Carlo method. A detailed description of the
algorithm is given in [11]. The algorithm starts at {ime
t-1 with an un-weighted distribution Lthl,N"l‘E’ of
sampling particles (yellow circles in the first row of
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importance weights W of each particle
(blue circles 2nd row). The result 1s the approximation
of p(x,,| y..)- During the next step, the resampling
of the particles, only those particles are taken into
account which reproduces the observation best. The
result is fp un—wiighted distribution of sampling

Fig. 3). The next ste %s t}(w,e calculation of the

particles Xg'_)l,N_1 (third row yellow circles). The
final prediction step uses the filter model description
including the model noise, which produces variety in
’I-Le,fam ing distribution, for the approximation of
XEI ,N™ (4th row Fig. 3). The result is the
pproximation of p(x,| y.;) (5th row Fig. 4),
which is the posterior distribution of the estimated
parameter. The process is repeated until the
simulation is finished.

5 RESULTS

In this section the results of the simulations for the
static and dynamic scenarios with and without AIS
are presented.

As already discussed two main performance
properties are of interest. The first is the convergence
time, which is the time the method needs to estimate
the position of the echo for the first time, and the
second is the tracking error Er, which can be
interpreted as the position accuracy of the particle
filter.

CONVERGENCE TIME

Initially the particles are spread randomly over the
radar image. The filter has converged when the
majority of the particles are close to the target. At this
point the particles move with the target and adopt its
shape. In this study we define convergence when the
error, which is defined as the Euclidean distance
between the simulated position of the target (S5x,Sy)
and the estimated position of the particle filter
(Px,Py), is smaller than 2 pixels. The distance is
calculated with

B, = J(ij—ijf-+(Pyj—Syjf , @)

where j is the frame number and the position of the
simulated target and the position of particle filter
estimation is in radar coordinates.

TRACKING ERROR

The tracking error is a measure of the accuracy of
the algorithm. In this paper the tracking error is
defined, as the average over 400 images of the
Euclidean distance between the real position of the
target and the particle filter estimated position after
the algorithm has converged. The tracking error Er
can be calculated with:

ZT:NC\/(PXJ- —Sx; )2 +(Pyj -Sy; )2
= :

N-N

E

, ®)

where Nc is the converge frame number as defined in
the convergence subsection, N is the total number of
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images synthesized, (Px,Py) is position of the particle
filter estimation and (Sx,Sy) is the position of the
simulated target and j is the frame number

In the following part the results of the performed
simulations are presented. The results of the particle
filter process without the fusion of AIS data is shown
first. Thereafter the results of the radar and AIS fusion
are presented.

SIMULATION WITHOUT AIS

This part presents the results for the simulations
without AIS. The first test scenario of a static radar
echo is presented in Fig. 5.
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Figure 5. Tracking error as function of the number of
particles for the static simulation of radar echo with four
different sizes

This figure shows the tracking error in pixels as a
function of the number of particles for four radar echo
sizes: 4 (black triangle); 8 (blue square); 12 (red
triangle) and 14 (green circle) pixels. The figure shows
that a lower number of sampling particles results in a
higher tracking error. In addition it can be seen that
larger targets are more difficult to track, because they
show larger tracking errors.
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Figure 6. Tracking error as function of the number of target
velocity for the dynamic simulation of radar echo for three
different numbers of sampling particles

The results of the dynamic test scenario without
AIS are shown in are shown in Fig. 6. The figure
shows the tracking error as a function of target
velocity for three different number of sampling
particles: 10,000(black) 60,000(red) and
100,000(blue).



The figure shows that the tracking performance of
the dynamic simulation can’t be improved by
increasing the number of sampling particles.
Additionally it can be seen that radar target echoes
with higher velocity show larger tracking errors.

SIMULATION WITH AIS
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Figure 7. Tracking error as function of the number of
particles for the static simulation with and without AIS for
four different echo sizes

Fig. 7 shows the tracking error in pixels for particle
filter configurations with different number of particles
and radar echo sizes: 4 (black triangle); 8 (blue
square); 12 (red triangle) and 14 (green circle) pixels.
The figure compares the results of the static target
with AIS (colored lines) with the results presented in
Fig. 5 without AIS (gray lines). As shown in the figure
the addition of AIS information improves the tracking
performance by a factor of 2 for all target echo sizes.
But the tracking error of larger objects is still larger
than for smaller echoes.
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Figure 8. Tracking error as function of the number of target

velocity for the dynamic simulation of radar echo for two
different numbers of sampling particles

Fig. 8 shows the results of the dynamic test
scenario with and without AIS. The figure shows that
the tracking error as function of target velocity does
not improve with the addition of AIS position data
and does not depend on the number of sampling
particles.
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Figure 9. Error distance as function of the frame number for
the dynamic simulation for two different veolcities with
additional AIS information.

Fig. 9 shows the convergence time of the particle
filter for a simulation with a static target of two sizes
(4 and 8 pixel) with and without AIS data. It is clearly
visible form this figure that the added AIS data
reduces the convergence time from 17s to 10s and
from 24s to 10s for the targets of sizes 4 and 8 pixels,
respectively.
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Figure 10. Error distance as function of the frame number
for the dynamic simulation for two different veolcities.

Fig. 10 shows the convergence time of the particle
filter for a simulation with a dynamic target with AIS
data as solid lines and without AIS data as dashed
lines. This figure shows that the added AIS data
reduces the convergence time for the given scenario
by 1s for the slow moving echo and 2s for the faster
one.

6 DISCUSSION AND CONCLUSION

In this section the results of the previous section are
discussed and concluding remarks are given.

This part discusses the results of the performed
simulations. The results of the static target scenario
show that the particle filter needs for the first
detection of the target radar echo at least 10 frames,
which is equivalent to 5 antenna rotations. The
Addition of AIS data does reduce this detection time
by a factor of 2.

The results of the dynamic target scenario show
larger tracking errors in comparison to the static
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simulations. The explanation could be that the
tracking performance, which is as accurate as 0.5
pixels in the static simulations, is smaller than the
velocity of the vessel in the dynamic simulation.
Therefore it is possible that the larger tracking error
results from the movement of the target vessel instead
of the position estimation. This would explain the
result of a tracking error similar to the vessel speed of
1 pixel/second. This is consistent with the fact that the
dynamic simulations with smaller velocities show
smaller tracking errors. The results of very slow
moving vessels show the same particle filter
performance as the non-moving static targets.

Additionally we like to point out that the filter
tuning is an important part of the overall performance
of the filter.

In the following part we conclude the results of the
study. In this paper we simulated scenarios of static
and dynamic radar targets. The simulations were
used to estimate the radar tracking performance of a
sequential Monte Carlo filter to follow maritime radar
echoes. The performed simulations cover situations
with and without additional AIS sensor position data
in the fusion process.

The results can be summarized as follows.

— The time to target vessel echo detection is
smaller than 1 minute

— The resulting tracking accuracy of sequential
Monte Carlo method is smaller than 1 pixel (~10
meters)

— The model assumption used in the particle filter
has a strong impact on the resulting performance

— The addition of AIS data increase the
performance the fusion process significantly

The in this paper performed simulations strongly
suggest that the sequential Monte Carlo method is
suitable for AIS and radar image fusion.

The next planned step is the improvement of the
sequential Monte Carlo filter simulation to more
realistic scenarios. This enhancement of the
simulation will improve the performance evaluation
of the fusion of radar image and AIS position. This

448

step is necessary to gain integrity information from an
AIS and radar fusion process with the final aim of the
introduction of data and system integrity into the
maritime traffic situation aboard a vessel as well as
ashore.
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