PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the deformed Besov-Hankel spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce function spaces denoted by [formula] as subspaces of Lp that we call deformed Besov-Hankel spaces. We provide characterizations of these spaces in terms of Bochner-Riesz means in the case 1 ≤ p ≤ +∞ and in terms of partial Hankel integrals in the case 1 < p < +∞ associated to the deformed Hankel operator by a parameter k > 0. For p = r = +∞, we obtain an approximation result involving partial Hankel integrals.
Rocznik
Strony
171--207
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Department of Mathematical Science College of Science United Arab Emirates University Al-Ain, Abu Dhabi, UAE
  • Université Tunis El Manar Faculté des Sciences de Tunis Laboratoire d’Analyse Mathématique et Applications LR11ES11, Campus Universitaire, 2092 El Manar I, Tunis, Tunisia
autor
  • Université Tunis El Manar Faculté des Sciences de Tunis Laboratoire d’Analyse Mathématique et Applications LR11ES11, Campus Universitaire, 2092 El Manar I, Tunis, Tunisia
Bibliografia
  • [1] B. Amri, A. Gasmi, M. Sifi, Linear and bilinear multiplier operators for the Dunkl transform, Mediterr. J. Math. 7 (2010), 503–521.
  • [2] S. Ben Saïd, A Product formula and convolution structure for a k-Hankel transform on R, J. Math. Anal. Appl. 463 (2018) 2, 1132–1146.
  • [3] J.J. Betancor, L. Rodríguez-Mesa, On the Besov–Hankel spaces, J. Math. Soc. Japan 50 (1998) 3, 781–788.
  • [4] J.J. Betancor, L. Rodríguez-Mesa, Lipschitz–Hankel spaces and partial Hankel integrals, Integral Transforms Spec. Funct. 7 (1998) 1–2, 1–12.
  • [5] J.J. Betancor, L. Rodríguez-Mesa, Lipschitz–Hankel spaces, partial Hankel integrals and Bochner–Riesz means, Arch. Math. 71 (1998) 2, 115–122.
  • [6] M. Boureanu, V.D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. 75 (2012), 4471–4482.
  • [7] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York, 1953.
  • [8] A. Gasmi, M. Sifi, F. Soltani, Herz-type Hardy spaces for the Dunkl operator on the real line, Fract. Calc. Appl. Anal. 9 (2006) 3, 287–306.
  • [9] D.V. Giang, F. Móricz, A new characterization of Besov spaces on the real line, J. Math. Anal. Appl. 189 (1995), 533–551.
  • [10] J. Gosselin, K. Stempak, A weak-type estimate for Fourier–Bessel multipliers, Proc. Amer. Math. Soc. 106 (1989) 3, 655–662.
  • [11] L. Kamoun, Besov-type spaces for the Dunkl operator on the real line, J. Comput. Appl. Math. 199 (2007), 56–67.
  • [12] L. Kamoun, S. Negzaoui, Lipschitz spaces associated with reflection group Zd2 , Commun. Math. Anal. 7 (2009) 1, 21–36.
  • [13] M. Mihailescu, V.D. Radulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier 58 (2008), 2087–2111.
  • [14] S.M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems, Die Grun. Der Math. Wiss. in Einze. Band 205, Springer, Berlin, Heidelberg, New York, 1975.
  • [15] V.D. Radulescu, D.D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CCR Press, Taylor and Francis Group, Boca Raton FL, 2015.
  • [16] P.G. Rooney, On the Yv and Hv transformations, Canad. J. Math. 32 (1980) 5, 1021–1044.
  • [17] M. Rosler, Bessel-type signed hypergroups on R, Probability measures on groups and related structures, XI (Oberwolfach, 1994), 292–304, World Sci. Publ., River Edge, NJ, 1995.
  • [18] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b449f5c4-a228-47ad-aafe-1f23f0db2dd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.