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ON THE DEFORMED BESOV-HANKEL SPACES
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Abstract. In this paper we introduce function spaces denoted by BH,Z:; 0 < B <1,
1 < p,r < +00) as subspaces of LP that we call deformed Besov—Hankel spaces. We provide
characterizations of these spaces in terms of Bochner—Riesz means in the case 1 < p < 400
and in terms of partial Hankel integrals in the case 1 < p < 400 associated to the deformed
Hankel operator by a parameter x > 0. For p = r = +00, we obtain an approximation result
involving partial Hankel integrals.
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1. INTRODUCTION

In [2] the author introduced a new transform F,; called deformed Hankel transform
which is a deformation of the Hankel transform by a parameter x > 0. Namely, for
k> Yand f e LY(R,du,) (due(z) = 27'T(2k) " |z[?*~1dz), the integral transform
F is defined by

FulHN) = / Bo(\ o) f(2)dun(z), AER,
R

where the kernel B, (), z) called deformed Hankel kernel is given by

Bu(A) = joxs (2y/Tha]) — =2 S (2P (11)

2k(2k + 1

Here j, is the modified Bessel function of the first kind and order «.
The same author established a product formula for the kernels B, (A, z), which
induces a translation operator T, (see [2, §1] for more details).
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In this paper we are concerned with the characterization of the deformed Besov—
—Hankel spaces. Our aim is to show that we can characterize the deformed Besov—Hankel
spaces by means of Bochner—Riesz means and partial Hankel integrals.

Let 0 < B < 1,1 <p,r < +4o0. We say that a measurable function f on R is in
the deformed Besov-Hankel space BH,'}; if f € LP(R,dpu,) and

+oo

£\ dt
/(wp(ﬁ >> — < +oo, 1<7r < +oo,
0

th t

,t
ess sup (wp(ﬁf)) < 400, 1r =400,
t>0 t

where

wp(fv ) =T f+T5,f - Qf”n,pv t eR,

denotes the modulus of continuity of second order of f and | - |4, denotes the norm
of the Lebesgue space LP(R, d).

Note that the modulus of continuity has been used to characterize Sobolev spaces
(see [6]).

The space BH ,:O [;OO is called the deformed Lipschitz—Hankel space denoted A, g,
defined by

App = {f € L (R, dpu) : esssup (W) < +oo}.

t>0

We introduce the deformed Bochner—Riesz means J%, where T' > 0 and v > 0, as
operators on L'(R,du,) defined by

o} f(x) = /T Bu(\a) (1—'T”)7fﬁfu>dun<x>, rER.

St = or,0 is called the deformed partial Hankel integral.

The contents of this paper are as follows.

In Section 2, we collect some results about harmonic analysis associated with the
deformed Hankel transform.

In Section 3, by using the deformed Hankel transform F,, we define the
Bochner—Riesz mean o), where T > 0 and v > 0 as an operator on LY(R, du,).
Whenever v > 2k — 2, o7 is a convolution operator on L' (R, dyu,). Next we extend
the definition of o7, on LP(R,du,;), 1 < p < +o0 provided that v > 2x — 3 Slmllarly,
we define the partial deformed Hankel integral Sy, T > 0 on LP(R, du,),

In Section 4, we introduce the deformed Besov—Hankel spaces BH"", 8 0 < 5 < 1
and 1 < p,r < 400. We provide their characterizations. Firstly, for 0 < B <1and
1 < p,r < 400, we give equivalent properties in terms of the deformed Bochner RlebZ
mean ensuring that a function f € BH”Z Next, for 0 < < 1 and 4H+1 <p< 4H T
we derive equivalent assertions involving the deformed partial Hankel integrals. Finally,
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for p = r = 400 we obtain equivalent results and also an approximation result involving
partial Hankel integrals.

Analogous results were obtained by Giang and Méricz in [9] for the classical Fourier
transform on R, by Betancor and Rodriguez-Mesa in [3-5] for the Hankel transform
on (0,400) and by Kamoun in [11] and Kamoun and Negzaoui in [12] for the Dunkl
transform on the real line. Characterizations of other functions like Orlicz—Sobolev
and Sobolev spaces has been studied by Ridulescu et al. (see [6,13] and [15]).

Note that throughout the paper, C' is a positive constant that can change from
one line to another.

2. HARMONIC ANALYSIS ASSOCIATED
WITH THE DEFORMED HANKEL TRANSFORM

2.1. PRELIMINARIES ON BESSEL FUNCTIONS

In this subsection we recall some properties of the Bessel functions and the normalized
Bessel functions of the first kind and order a.

Let a € R such that o > —5 The Bessel function of the first kind and order « is
defined on |0, +oo[ by

+o0

Jalw) = (g)Zw(ﬁ@n (5"

The function J, possesses the following asymptotic behavior:

xa

—_— h + 2.1
T(at 1) when z — 0 (2.1)

Jo(x) ~

and

Jo(z) = \/zcos (x — (20 + 1)%) +0 ( 31/2) when z — +o00. (2.2)

We also recall some useful integrals involving J,. For a € R% , we have (see [7, p. 49])

+o0 (la+ lp)
/ Jo(at)tP~tdt = 207 a™P == (2.3)
J r (1 + 50— §p)
For z,y € R and T > 0, we have (see [18, §5.1(8)])
f T T T T T T
/Ja A|Z‘| >\|y|))\d)\ ‘m|Ja+1( |Jf|) ( |y|)_y|y|Ja+1( |y‘) ( |$D (24)
0
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For the normalized Bessel function j, of the first kind and order «, we recall that

400 1ym (u 2m
jalw) =220+ )7 _pa 1) 3 m(!Fa +(72n)+ ok (2.5)

Its representation integral formula is the following:

1
3 F(a + ].) / 2Na—L izt
aAz) = ————— [ (1 =t 2e"7%dt, N,z €R. 2.6
Now we recall Sonine’s integral formula. Let o, 8 € R be such that a > § > 3
then
2 ( i
. (a+1) 9
a(Az) = (1 =3P Lig(\at) 2P, R, A € C.
) =t ¢ 5O\t R Ae
0
(2.7)
The product formula for j, is given by
Ja(AT)ja(Ay) Z/JQ(AZ) a(,y,2)2% 2, z,y € RY, (2.8)
0
where
1
la+1 (@ +y)° =) = (x—y)*]" >
Wal(2,y,2) = 55— ( ) [ 5o ] Lo —ylaty((2)-
220-1T (o + 1)/7 (zyz)
(2.9)

Here 1 4 is the characteristic function of the set A.
We conclude this subsection by the derivative and the three-term recurrence formula

%Ja(u) = _ﬁuja-i—l (u),
Pjara(u) = 4+ 1)@+ 2)(ass () — ja(w), wERy  (210)

2.2. THE DEFORMED HANKEL CONVOLUTION

In this subsection, we investigate a convolution product associated the deformed
Hankel kernel.
For z,y € R* fixed, we denote by K, the function defined by

Kn($7ya ) - 2F 2K W2K 1 V |l’ \/E \/7 xr,Y,z 7 (211)
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where W, is the positive kernel given by (2.9) with o = 2k — 1,

1 sgn(zy)
Vo) = {1+ Z [l ) 1) - 1)
sgn(zz) 2
4k -1
+ ) A 2] ol yl)? - 1]
sgn(yz) 2
+ 0 Lz o o - 1)
and 1
A = — R%.
(u, v, w) QM(u—i—v w), u,v,w € RY
Remark 2.1.

(i) The function z — Ky (z,y, ) is supported on

(VIel = VID? < l2l < (Ve + VIy])*.

(ii) The kernel K (x,y, z) is not well-defined as a function if = or y is zero; in this
case K, (0,y,2)|z[**71dz (resp. K. (,0,2)|z|**"1dz) can be considered as dd,(z)
(resp. do,(z)), 0, being the Dirac measure.

Theorem 2.2 (see [2]). Let k> L. Then the following assertions hold.

(i) For any A € R and z,y € R, the product formula for the kernels By is of the
form

B 2)BL(y) = [ BuOh 2o, 22,
R

where the function K, is defined in (2.11).
(ii) The function K, (x,y, z) is unchanged by permutation of the three variables, it is
non-positive and

/Kﬁ(x,yw)dun(Z) =1
R
(iii) There exists a constant A, independent of x and y such that

/ K o(2,y, ) dpin(2) < A,
R

Moreover A, S2ask — 400, whenever xy < 0, and A, S 3ask — 400,
elsewhere.

Definition 2.3. Let f be a suitable function on R. The translation operator T}’ is
defined by

T3 (1)@ = [ £ Ko 2)dn(2)
R
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Remark 2.4. For z,y € R*, T7(f)(0) = f(y) for y € R* and T¢’(f)(z) = f(x) for all
r € R. It satisfies T (Bx (A, -))(7) = Be(A, ) Be (A, y) and T7 (f)(z) = T (f)(y)-

Lemma 2.5. Let ¢ € S(R). We put

. 902,z,¢(zt>

©01,2,6(7) = 0 ((x,2)),  P2,2,6(T) = o((T,2)¢) and @3, 4(2) = T

with zy = ¢ + t(y — x). Then for all x,y € R, we have

1750 = Ty lle < Cle = ol (161 2 0llet + 1922 6l + 93,2601 -

Proof. By [2, Lemma 3.4], one can write

Ty e(y)
= /%(<$a y>¢){1 + %(450082 ¢ — 1)}(sin ) 2dg
0
+ [ eolte y>¢>{(sgn<m> +san(y)) — o san(ey) (4 ) <“y>‘i }<sm o)1 ~2dg,

0
So we get

Tro(z) — Te(2)

s

— [ el 20 {1+ D 450052 6 — 1) sim g2
Joiaafio gt

4K sin? ¢
1 sgn(zz)(z + z)

wn

[ oolle, 2a) {<sgn<x> T sgu(z)) -

pe((y, 2)3) {1 + Sf;l(_yzl) (4K cos® ¢ — 1)} (sin ¢)**~2d¢

kr—1

—y Ty Ty

©o((y, 2)¢) { (sgn(y) +sgn(z)) — o sgn(yz)(y + 2)
4 (

pe((T,2)0) — e (Y, 2)g)

Ot~y
— ©

4k cos? ¢ — 1

= <sgn<xz>sae<<x, 2)s)

— sgn(y2)ee (v, Z>¢)>1 (sin §)**~?dop



On the deformed Besov—Hankel spaces

177

T

o

0

Po((, 2)0) (sgn(x) + sgn(2)) — o((y, 2)0) (sgn(y) + sgn(2))

iy (y +2)
sin qb(sgn(yz) ey ©o((y,2))

+4/§—1

-sgn(mz)SZ;;;Zgax<x,z>>¢>]<sn1¢>4”-2d¢.
Since
P1(@) = 0el(2)) (@, 200)
and

’

<P2,z,¢(x) = (,00(<.’,E, Z>¢)(<I, Z>¢) 5
we get by the mean value theorem that

©1,2,6(%) = P1,2.6(Y)
r—y
1

— [ e+ ta )i

0
1

= [l tlo = ) (o 200) (o + )
0

If x and y are of the same sign, then we use the change z; = x + t(y — ). We obtain

Tye(z) =T p(z)

=w—mjfk@¢m

4k cos? ¢ — 1
4k —1
+ (sgn(ze) +sgn(2)) e - ¢(2t)
4K
4k — 1

Sgn(zt2)901,z,¢(zt)

<p2,z,¢(zt)
<Zt7 Z>¢

sin? ¢ [Sgn(ztz)(zt + z)

] ] (sin @) 2depdt.
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Therefore,

Tio(z) = Tje(2)

(@—y //l(p bz <1+||—\/|27z|cos¢>

4cos“p—1 / .
+ Tjslsgn(ztz)weﬁzt,z)(b) <1 + 2| — | cos¢>

+ (sgn(z1) + sgn(2)) e, (21, 2)g) (1 + 2| — \/% cos ¢>
4k sin? ¢ s
+ msgn(ztz)(zt + 2)p3.2.6(2) | (sin @) dodt

s

F7l B
—(z—y) [so lz) (1 el - %05)
0/0/ 1 |th‘

decos?p—1 , 2|
—————sgn(z2)py L 4(2) | 1+]2] - cos
11 sen(a2)en. 4 (2) ( 2] oY ¢

T (sgn(zr) + sgn())h . o () (1 el - h ¢>
4k sin? ¢

+ msgn(ztz)(zt + z)gag,m(zt)] (sin ¢)*~2depdt.

s

1
dcos? ¢ — 1
(z—y O/O/l%zqs ( CZS 1 sgn(ztz)+1) <1+|z|— 2 cosc;S)

+ <P,2,z7¢(zt)(sgn(zt) + sgn(z)) (1 + 2| — 2 coS gb)

4 sin?
+ ©3.2.0(2)sg0(22) (2 + z)m] (sin @) 2d¢dt.

Since there exists a positive constant C such that

4k cos? ¢ — 1

B
—————sen(zz) + 1| |1 + |2] — cosp| < C,
O L) +1) 1412 oo

z
jsgn(z0) + sgn(2)] 1+ |21 - '| | cos| < C.
Ztz
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and

4k sin? ¢

sgn(z:z)|z: + z| —

<o

we deduce that
Ty ¢(z) = Tp(2)]

™

1
<Cla—yl [ / [P l)] + 05,0 o) + 03,20 (sin 8) ™2t
0

By making a change of variable u — (2, 2},

T2 o(2) = Ty e(2)]

<Clo =gl [ [ (1610000 + 6,001 + om0 0)]] Ktz 0)dsn ()

By Fubini’s theorem and the fact that [, K. (2, z,u)dp,.(u) = 1, we have
T2 e (2) = T”sﬁ( )|

<c|x—y|/ 1r (0] + |950 0 (0)] + 032 (u /K (20, 22 w)dpun(u) | dt

<Cla | / (162 0 (0] + [t 2 g (0] + I 20 (w) ]

< Cla =yl (ler s glln + 162 - gllwt + 125,61 )

which finishes the proof of the lemma. O

Lemma 2.6 (Bernstein’s lemma). Let f € LY(R,du,) and T > 0 be such that
supp(F. f) C [T, T}, then for all z,y € R we have

IT5f =T fllea < CTlz =yl flx1-
Proof. Take the function

T2n

or(r) = Trt D)

Jor(24/]2|T) € S(R).

Since S(R) = LP(R, duy), p € [1,+00], we have

F(or)(z) = X[-T,T) (z),
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where x[_7 7] is the characteristic function of the interval [T, T]. Thus
Fu(®)(x) = x|—1,17)(2),
the function ¢ is homogeneous of degree —4k, i.e.
¢r(x) = T"¢(Tx),

and then

Felor)(@) = Ful0) () =1
in the interval [T, T] and we can write
T (f)(2) = Ty (f)(2) = o7 = (T f = T f)(2)
= [ (T7dr — Ty or)(2).
By Lemma 2.5, we obtain

[

T;¢T||R,1
T(¢) = TyT ()

<CT|x—

which completes the proof of the lemma. O

By means of translation operator we can define the deformed Hankel convolution
product.

Definition 2.7. The deformed Hankel convolution product of two suitable functions
fand g on R is defined by

(f *x 9)(x /f )T (9)(y)dpu(y //f (2, y, 2)dps (2)dpn(y).

Remark 2.8. For f,g € L}(R,du,) and y € R, we have
T;(f *K g) :T;(f) ¥ § = f* T;(g) (212)

2.3. THE DEFORMED HANKEL TRANSFORM
First, we shall prove the boundedness of the deformed Hankel kernel.
Lemma 2.9. Let k € R, k > %. Then

|B.(\,z)| <1, XzeR.

Proof. The relation (2.10) implies that the deformed Hankel kernel B, (A, z) can be
expressed in terms of the normalized Bessel function

B.(\,x) = joe_1 (QM) — sgn(A\z) {jz,.C (2 |>\x|) — Jor—1 (2 |/\x|)] )
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If A\ and x are of different signs, we have
Be(A ) = jaw (2v/IA0])

so the assertion is clear.
Now, if A and z are of the same sign, then from (2.6) we get

By(\ ) = 2jan-1 (2VA7) = jan (2VA2)

1
- ) o (3vE) (14 25 -

-1

Using the fact that

/1 (13" 2 dt = Vlla = 3)
1

MNa+1) ~’

we obtain

2 1 I'2 1 i

IBo(\,2)| < < (2 + )1 /(1 )2t gy
26— 5 VAl(26+ 3)
2 1 /
_ (HiJr)l /(1 —t2)2“*%dt =1
\/771'1—‘(2:% + 5)

which gives the assertion. O

Lemma 2.9 permits to define the deformed Hankel transform.

Definition 2.10. For f € L'(R,du,), the deformed Hankel transform F,(f) is
defined by

/f (A 2)dpg(x), A eR.

Remark 2.11. If f € Ll(R,d,un), then F.(f) € Co(R) and || Fr fllx.00

For o € R, @ > —3, we denote by H,, the Hankel transform defined for a suitable
function f by

Holf)(v) = / FO)ja(t)2otdt, v €]0, o0,

20— 1F a+1)
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Using the superposition (1.1) for the function B, we obtain the following lemma.

Lemma 2.12. For all f € L*(R, du,), we have

Fel 1)) = gz Hon 1 (0) (VI ~ ggmrgHonn (VD A€ R,

where g, h are the functions defined on Ry by

mwﬂg),mw ()

and f. and f, are the even and odd part of the function f.
Proof. Writing f = f. + f,, we obtain
Fiu(f) = Fufe) + Fulfo)- (2.13)

By a change of variable, we get

Full) (V) = / () a1 23/ PR 2

R
x)j2r—1(2 \)\|J;)x2“_1dx
0 (2.14)

4k—1
M/fe( )sz LtV AT dt

= oMo 1 (9) (V)

and

-
E@MM—H%+2/ﬁwa@|MW%M

4;@-{—1

l
- 2(2/~;+2 /fO( >J2m+1(t I\ttt (2.15)

:_ﬁ%ﬂmﬂWVW)

The result follows from (2.13), (2.14) and (2.15). O
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Theorem 2.13 (see [2]). Let k> + and A, be as in Theorem 2.2 (iii).

(i) For all f € L}, (R,du,) and for all z,y € R, we have
Ty (fy) =T, (f,x) and TyoT;=T;oTy.
(ii) For all1 <p < oo and f € LP(R,dpu,), there exists a constant A, such that
175 ()]

(iii) If f € LP(R,duy), 1<p<2andz cR, then

wp < Acllfllep, = €R.

for almost every A € R.
iv) (Young’s inequality) For p,q,r such that 1 < p,q,r < oo and * +1 -1 =1
P g

and for f € LP(R,du,) and g € LY(R,du,), the convolution product f *,. g is
a well-defined element in L™ (R, du,) and

1f 5 gl < Aullfllspllglls.q-

v) For p,q,r such that 1 < p,q,r <2 and + +1 —1 =1 and for f € LP(R, dp,.
p g T
and g € LR, du,), we have

Fu(f #r 9) = Fu(f) Fulg)-

In particular x, is associative in L*(R, dp).
(vi) For f and g in L} (R,du,) such that

loc
supp(f) C {z : |z| <t} and supp(g) C {z:r <|z| < s},
with s >1r >0 and t > 0, we have
supp(f #x 9) C {x: (V7 = V1)* < Jz] < (Vs + V1))
Theorem 2.14. Let k > %. Then the following assertions hold.

(i) Fx is an involutional unitary operator on L*(R, dpu,).
(it) If f € L*(R,dp,) N L* (R, dpy) then Fi(f) € L*(R,dp,) and [ Frf 2 = [ flls2-
(iii) There ewists a unique isometry on L*(R,du,) that coincides with F, on
LR, dp) N LR, dpuse).

Proof. (i) Let f = f. + f, for f € L}(R,du,). We put

= @ and h(t) = @.

t2
4
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Then using the inversion formula for the Hankel transform and by a change of variable,
we obtain

Je(z) =29(2+/|z|) = 22”%1“(2/{) 7H2K1(9)(V)j2n1(2 ()t dy
0
- / Hon—1(9)(VA)jor—1 (2/ Nl pin (V)
R
- o / Hon-1(9)(VA) Ba(A, 2)dpi (V)
/ FulF) VBN, ) (V).
On the other hand,

1 , .
hVIeD) = gy [ Mo (W@)iaes (2l
0

1 ; 2k+1
= WM/HMH(M(W\)J%H(Q Nz)AZ5 LA,
0

Thus from (2.15) we get
= zh(2v/]z])

_m /H2m+1(h)(ﬁ) (Bo(\, ) — Bo(—X, 2)) A% dA
0
W‘]W\/H2K+1(h)(\/X)BH(>\,m)A2W+1d>\
/.F fo )\z)/\Qn 1d>\
/ Fuld w(A @) dp(A)
R
)

which gives (i
(ii) From (i) we deduce that

f(@)a(@) = / FulF)NBa(X 2)g(@)dpin (V).
R
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The application of Fubini’s theorem yields
/f 9(@)dpn( )f /g k(A @)dpe () | dpe(A)
/ FolHNF@ Ndun (V).
(iii) Let f € L*(R, dpuy), then fn, = fl[_, ) is in L*(R, du,) and

5= Flze = [ 1@ Pdina) 0.

+oo

|z|>n
From (ii) we deduce that the operator
Fro o LR, dp) N L2 (R, dpy) — L2(R, dp,.)

is continuous for the norm || - ||, 2. As the space L*(R, du,) N L*(R, du,) is a dense
part of L?(R,du,) and L?(R,du,) is complete, so by the theorem of extension of
uniformly continuous applications (a linear application is continuous if it is uniformly
continuous) there exists a unique extension of F,; in L?(R,dy, ). The extension is still
an isometry of the norm || - (ii).
If we also know that the image is dense, then the operator is surjective and the inverse
is continuous because F; is an isometry. O

3. THE DEFORMED BOCHNER-RIESZ MEANS
AND THE DEFORMED PARTIAL HANKEL INTEGRALS

3.1. THE DEFORMED BOCHNER-RIESZ MEANS

In this subsection, we will define and study the deformed Bochner-Riesz mean operator.
For/<;>i,720andT>O,weput

T2 (v + 1)

P = T
7(7) D26+~ +1)

i (2V]2]T), z €R. (3.1)

Remark 3.1. We note that

C T, near the origin,

[} < 5 5 2
[@7.5()] _{ CTrR 3% |x\*“’§’%, as r — +o0. (3-2)

Proposition 3.2. Let f € L'(R,du,), k> 1, v >0 and T > 0, then the deformed
Bochner—Riesz mean verifies the convolution relation

ol f = Oy *n |- (3.3)
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Proof. Let x € R. Using Fubini’s theorem, we obtain

o Z B (1- 'A') FulHNdin(N)

-/ [ /T B\ 2)B.(\.y) (1—';')7%@)] 7 ) din(y).
Gy

R

By (2.8), a change of variable and Fubini’s theorem applied again we have

/T 5.0 0B,00) (1~ B) dey
T

1
= 1% [ BT ) BuVT) (1 ) ()

1
— T2n/
-1

1

= TZH/ /BH()\T? Z)(l - )‘|)7dﬂm<)\)] KN<$,y,Z)dMK(Z>
R L1

] (3.4)
/BK(AT, Z)Kn(x,y,Z)dun(Z)] (1= [A[)dpc(N)
R

Using the obvious relation

B (AT, 2) = jan—1(2V/ [AT2)),
a change of variable and (2.7), we get

1

/ B(AT,2)(1 = |\ dp(A) = / Jore1(23/TNETT)(L = A Ydpi (V)
Z1

-1

1
= 2/j2,§71(2 12[Tp) (1 = 1) Ly
0

T@r)IC(y+1) .

== (2 T).
F(2n+7+1)ﬂ2 +'y( |2|T)
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Thus,

[ B0 (1- 1) an) = @ ). (35)

Combining (3.4) and (3.5), we arrive to the desired assertion for o7.. O

Lemma 3.3. Let k > %, ¥ > 2Kk — %, and T > 0. Then

(i) Jp Prny(@)dps(z) =1,
(if) for g € [1,400[, @7~ € LI(R, dps),

(iii) Th_rgof\xlze | @71~ ()| dpw(z) = 0 for all € > 0.

Proof. (i) By a change of variable, (2.5) and (2.3), we obtain

2% +o00
/@T,’y(x)duﬁ(‘]}) = w / ].254,-7(2\/17)332'{_16&:

I'2e+v+1)
R 0
(v + 1) o
- 24n—1F(2n;F(2n +v+1) O/ Jorr (OF Tt
B 2’7"1‘1—2&1'\(7_’_ 1) +ooJ 1
- / o (RN = 1
0

which gives (i).
(ii) Let g € [1, +o0[. Then using (3.2), we get

+oo
/|‘I)T,~,(x)|‘1 du(z) <C+C / ‘x|2n—1_q(ﬁ+%+i)dm
R 1

Since

(+7+1) PR
Ny y)i=RT T o

the assertion (ii) is an immediate consequence of the above inequality.
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(iii) We have

|lz[>e
< lim crr 27%|ae| "R adu,(x)
T— 00
|z|>e
—€ + oo
:Tlim /C’T“ TE || ddp (x) + /CT” 27 || T2 T A dp, (x)
— 00
— 00 €
[ —e “+o00
= tim 1 E 4| [ ol o)+ [ el A do)
— 00
— 00 €
[ —e “+o00
= lim OT* 373 /|x\”_5_1dx+ /x”_%_zdx
T— 00
[—OC €
0l 1 o 1
 im O E} [ o]
T—o0
— lim CT" 3 45371 =0if v > 2k — -
TgnooC 2712 01’}/>,‘€2
which furnishes the assertion. O

Remark 3.4. Let f € LP(R,du,), 1 < p < 400, and assume that v > 2k — % Since
®r . € L' (R, du,) we have by virtue of Theorem 2.13 (iv)

197,y *1 [llep < All®rylle, 1]l flls,p-
That suggests us to define the operator o7, on LP(R,du,) by
v
O'Tf = <I>T,'y ¥4 f

Lemma 3.5. Let v > 2k — % and 1 < p < 4o0. For every function f € LP(R,duy),

we have
—+oo

f@)1og(2) = [ o3 f(@) ~ opf@)] G ae R

0

Proof. Let f € LP(R,du,;). Then for every T > 0 we can write

2T

ol (@)~ 03 (@) = [ L7 f@}dt ae weR
T
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By integrating both sides and using Fubini’s theorem, we obtain

+oo +oo /2T
[ s - s G = [ | [ &torsna ) F
0 0 \T

+oo

—log() [ {0} S}

0

—10g(2) (lim_o7 () ~ Jim o7(0) )

—1i
T—0

Since ®r . is an approximation to the unity, then we can prove as in [8] that
o f(z) = f(z) as T — +o0, almost everywhere = € R.
Moreover, according to Proposition 3.2 and Theorem 2.13 (iv), we get

o7 f ()] < Aw[®7]

mp'”f‘

K,p»

here p € [1,4o00[ and p’ its conjugate exponent. By a change of variable, it follows that

.
I’

or(y+ 1)1 [ [, o
(@7l = o0+ DI [l 2
0

T2k +7+1)
=CTY,
where
oo %
D(y+1) _ ' dne !
C=—= / Jartr ()P g dy
27 T2 +y+1) \

Hence, o f(xz) = 0 as T — 0, uniformly in z € R which proves the assertion. O

3.2. THE DEFORMED PARTTAL HANKEL INTEGRALS

For T > 0, we define the deformed partial Hankel integral Spf of a function
f € LY(R,du,) as follows:

T
Sr1(@) = [ BUAOF(DNia(N), o € Bof € LR d).
7
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Proposition 3.6. Let f € LY(R,dpu,). Then we have

Srf(z) = / B ()T (f, 2)dpn(2), @ € R. (3.6)
R
Furthermore, if 1 < p < %5, then the partial deformed Hankel integral given by the

above identity is well- deﬁned on LP(R, du,;).

Proof. The first assertion is a consequence of (3.3).

Let 1 < p < %, and ¢ its conjugate exponent. Since (nJr i) q > 2Kk one
has &7 € LI(R, du, ). Holder’s inequality and Theorem 2.13 (ii) ensure that (3.6) has
a sense for f € LP(R, dpy). O

Proposition 3.7. Suppose that il 4251. Then {St}r>0 s a uniformly

bounded family of operators from LP(R,dpu,) into itself.

Proof. Let f € C.(R) and T > 0. Fubini’s theorem gives us

Srf(x)
T
“Jrof e
T
/

_2/f ( (]2/1 12V Az])jas—1(24/Aly])

B (A 2)Be (N, y)dps(N) | di(y)

+(2H(;€3ﬁ/1))2j2n+1(2 ) jars1(2 A|y|)>dun()\)>dun(y)

0o T

—4 / fo(w) / Jore 1 2/ N2 o1 (239 it (V) | ()

T

4 [ 100 | [ reyion s 2V A (23 A (V) | din)
0

e’} T
:2|x\_”+%/fe(y) /JQ,{,l(Z |z]s)Jark—1(24/ys)sds y”_%dy
0 0

(') T
1 2|~ Esgu(z) / fo(y)< / o (2 |x|s>J2K+1<2¢§s>sds> iy,
0 0
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By relation (2.4) and a change of variable, we get

fe(z Jg,{ 1(2T2)z 25z

Srf(x) = —2T|x| " Jp. (2T /|2 /

+ 2T || 72 Ty 1 (2T/]2]) / fe(z Jgn (2T2) 2% dz

folz

— oTsgn(@) |z o ra (2T/2]) / J%H(QTZ,) 2m-2,

+2ngn( )|Z‘| ’/"+2 J2 +1(2T ‘JZ‘ /LJ2K+2(2TZ) 2K71d2’.

Therefore,
St f(x)
= T2 1o (2T /|2 H- (2% Jox 1 (2T2) fo (%)) (V/]2])
+ 7T ||~ S sgn () a2 (2T [ H- (522 k41 (202) fo(22)) (v/]20])
— w3 Ty 27/ [l o] =2 o (225 T (2072) £ (52)) (v/ ]
— T~ Esgn(@) 2]~ w1 (27V/[2]) Hy (2257 a2 (2072) fo (%)) (V/2]),

where H_ and H, are odd and even Hilbert transforms (see [16, p. 1028]). By taking
into account the behavior of the Hilbert transform on weighted LP-spaces it easy to
see that the right term of the above inequality defines a bounded linear operator
from LP(R,dp,) i %, i.e. since S7, T > 0 is bounded
on LP(R,du,), then

157 lls.p = P75 fllx

8K
4r+1

D
and

“+oo
|7 |lrp <C+C / |2 1Pt D)y = C 4+ C1.

Therefore, I is convergent provided that p > 2 -
Furthermore, the constant in LP(R,du,) boundedness does not depend on T.
The result arises from the density of C.(R) in LP(R, dpy). O

4. CHARACTERIZATIONS OF THE DEFORMED BESOV-HANKEL SPACES

4.1. CHARACTERIZATION IN TERMS OF THE DEFORMED RIESZ MEAN

In the following, we characterize the deformed Besov—Hankel spaces through the
deformed Riesz mean.
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Theorem 4.1. Let 0 < 8 < 1,7>2/{+ﬁ—%, 1<p<+4+o0,1<r<+00 and
f € LP(R,du,). Then following three properties are equivalent:

(i) f e BH],
(i) TPlogf = fllsp € L™ ((0,+00), GF) ,
(iti) TP(logpf — 03 fllwp € L™ ((0,400), 4L).
Proof. (i)=(ii) Let T" > 0. Since ®7, is even, then using the properties of the

generalized translation operator 777, y € R, we can write

+oo

THI@) = F@) = [ Bro(w) (T @)+ T7,00) ~ 20(@) dialw), v R (41)

0

By the generalized Minkowski inequality ([14, p. 21]) and (3.2), we can assert that

+oo
77 = Flp < [ 107, @l . 9)din ()
0

% “+o00
<C T2”/wp(f7y)y2”‘1dy+T“_%_% /wp(f,y)y”_%‘%dy
0

1

T

So
T ar)’
J @t =11l | <€ (U6t ) + 1Hllir oo )
0
where
T
G(T) = T2”+ﬁ/wp(f, y)y* "y
0
and

H(T) = TAtr—3—% /wp(f, y)y"_%_%dy.
By a change of variable, we get

G(T)=T" /1wp (f, %) y*dy
0
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and
+o00

H(T)=T" / wy (. 7) v tdy.
1
Case r = 1. From the Fubini—Tonelli theorem and a change of variable we obtain

oo T dT
T)—— 2K 1 i
[om= [rr{ (s g)eo) 7
0 0
1 +00 dT
0
/ Wy fa at
T 2%+ 8 ’
In the same manner, we deduce that
o ar 1 w (f.4) dt
w
H(T)— = / LAURAS S (4.3)
O/ T 1-k+i-8 ) Bt

The case r = 1 follows from (4.2) and (4.3).
Case 1 < r < 4o00. In this time we set % + %, = 1, then from the Fubini—Tonelli
theorem and the Holder inequality, we get

+/OO(G(T))7"dTT:7mG(T)T‘1TB jwp (f,%)u%—ldu %T
0 0 0

+oo

IN

I,
/

Thus

Z/M(G(t))rdTT §2n1+5 /(wpg’t)ycit ; (4.4)

and

+

3
S
+
3
3=

2

/(H(T))T%T sﬁ /(wpig,t))rcit )
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Relations (4.4) and (4.5) imply the case 1 < r < +00.

Case r = +00. Let us set
t
M = esssup (wp(f, )) )
t>0 8

Then for every A > M, we have
w,(f,t) < AP a.e.
Thus for a.e. T > 0,

1

T o0
T?|o0f = fllap < AC T2ﬂ+5/tﬁ+%—1dt+:ﬁ~+ﬁ—%—i /t“"_%_%dt
0 1 (4.6)

1 1
< AC — .
- <B+2n B+n;1)

Relation (4.6) implies the case r = oco.
Case p = oo. By assumption, f —a € LY for some a and 1 < v < 400, so the properties
(i), (ii), (iii) are equivalent, and for (i)=-(iii) it suffices to take into account that

A(f - CL,(E,t) = A(fvxvt)v O—%(f - a)(x) = U%(f)(l‘) - a.

In the particular case p = r = 0o, we get a characterization of the Lipschitz classes.
According to [9, Lemma 6] and [3, Lemma 2.2], it follows that if 0 < § < 1, and
7>2n+ﬂf%,weget

+oo % +oo T

rdl wy(f,y) )" dy
[ @ier-si) E <o [ () D <
0 0

Thus, (ii) is established.
The implication (ii)=-(iii) is clear.
(iii)=>(i) We define the operator A on LP(R,du,) as follows. For p € [1,+o0],
we set
A(f,x,t) = T f(2) + T2, f(x) = 2f(2), =t eR

By Lemma 3.5 and (2.12), we can write, for all ¢ € R and almost every x € R, that

+oo
At t)los(2) = [ o3 A, @) - FAU )] o
0
' A dr
— [ @y~ Br) e (Trr T -2 0 (@)
0

ar

+oo
= /A(a;Tf—U%f,x,t)?.
0
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From Theorem 2.13 (ii) we deduce that
1A f = op s )llwp < 2As +2)lloopf — o7 fllap, tERT >0 (48)

On the other hand, since C.(R) is a dense subset of LP(R,dp,), there exists
a sequence (fn)n>1 in C.(R) such that f, — f as n — 400, in LP(R,du,). By
Theorem 2.13 (iv), @1 *x frn = Pry *. f, as n — 400, in LP(R,dp,) for every
T > 0. Then we infer from Theorem 2.13 (ii) that T/ (D1, *x fn) = T (Pr~ *x f),
as n — +oo, in LP(R, du,) for every t € R and T' > 0. Consequently, we have

”A(Ung - J%fv ) t)‘

wp = A IAGI S = O Dl (49)

We chose a smooth function ¢ on R, such that p(y) = 1if |y| <1, and ¢(y) = 0 if
ly| > 2. Put ¢ = Fr.p and ¢ (y) = e**9(ey) for every € > 0 and y € R. One verifies
that Futbe(y) = ¢ (£), for every y € R and € > 0. So Fube(y) = 1 if |y| < e. From
Theorem 2.13 (iii) and (v), (3.3) and [18, p. 411], we are able to write

o1 % A(Ogp fro — 00 fns s t) = A(ogp [ — 0F fn, - 1)
Thus, we obtain
A(oYpfn = 0) [y t) = (Tfbar + TEor — 2a7) % (0gp fr — 01 fn)-
Theorem 2.13 (iv) and equality (4.9) imply that

”A(Ung - U%fa SOlkp = (T bar 4 T2 o — 29ar) *4 (U;Tf - U%f)”mp
< An”Ttni/QT + Tftw2T - 21/)2T||n,1||(7;Tf - U%f“n,p-

As in [10, Theorem 2.1, Corollary 2.2], we get
[A(o3rf = orfs Ollep < CtTlogp f — oqfllep, t>0,T > 0. (4.10)

Combining (4.7), (4.8) and (4.10) and the generalized Minkowski inequality, we obtain
for t > 0,

1
T +oo
dT
wn£:) <€t [odef = o flesdT+ [ N03ef = sy
0 1

So

1 1
—+00 ' 400 a “+ o0

/ (wpig’t)ycff < / @Oy T +4 [aner T, @

0 0

3=
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where
+
Gi(t) = 17 / l030f — 03 fllwplT,
0
i aT
() =t [ lodes - o3l

Using the same method as in the first case, we obtain

+oo

i cdt 1 - dT
J@oy <2 [ @logs -l (112)
0 0
T a1 7 dT
/(Hl(t))r - < e / (T?|o3rf — o9 fllep) T (4.13)
0 0

The assertion (i) follows from (4.11), (4.12) and (4.13). O

4.2. CHARACTERIZATION IN TERMS
OF THE DEFORMED PARTIAL HANKEL INTEGRAL

In the following, we characterize the deformed Besov—Hankel spaces through the
deformed partial Hankel integrals.

Theorem 4.2. Let 0 < f <1, 1255 <p < 35, 1 <7 < 400 and f € LP(R, du).

The following three properties are equivalent.
(i) feBH].

(ii) T°)Srf — fllep € L7 ((0,+00), 5F) -

(iti) TP(|Sorf — S7fllwp € L™ ((0,+00), L) .

Proof. Let v > 2k + 5 — %

(i)=(ii) For T' > 0 and g € C.(R), according to relation (3.3) and Theorem 2.13 (v),
we can write

fm(g%g) = }—m(q)T,v)fn(g)-

Since jo,a = 2k — 1 > —1 is an even function, by using formula in [18, p. 411],

2
we obtain
AN
]:K(CI’T,W)O\) = X[-T,T) ()\) 1- T )

where x(_7 7] is the indicator function of the interval [T, T]. Hence, it follows that

Sr(org) = org. (4.14)
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Moreover, both members of the last equality deﬁne bounded linear operators from
LP(R, duﬁ) into itself, provided that < p < 125 Since C.(R) is a dense subset
of LP(R, duy), we deduce that

4&-&-1

Sr(orf) =orf.

By using Proposition 3.7, we can assert that if 45_’7_1 <p< 4Sf1, we have

1S7f = fllep < IST(07f = Pllcp + lozf = fllep < Cllogf — f]

K,p*
So )
7 ar |’ T ar |’
J@iser =y Gy <cd [ @t =l p
0 0

where C' > 0 is a constant not depending on T. Hence (ii) can be deduced from
Theorem 4.1.

The implication (ii)=-(iii) is clear.

(iii)=-(i) Firstly, we will prove the following equality: for every f € LP(R,du,),

T
%/ — )78, f(x)dt = o f(x), T >0, and a.e z € R. (4.15)
0

Indeed, if g € C.(R), then by Fubini’s theorem we have

J

e (T - t)'y_lstg(a:)dt

St~

T t

-7 / (T -7 / By (X 2)Fi(9) Ny (M) | dt
T T

- % /(T B t)771dt B’@(/\’x)]:n(g)(/\)dﬂfc()‘)
=T \|A|

- [ B0 (1-B) @00 - e, serT>0

From the generalized Minkowski inequality and again the uniform boundedness of the
family {St}r>0 we obtain

T

T

v - v

7 [@-ortsis < & [@- 07 gt < Ol
0

0 K,D



198 Salem Ben Said, Mohamed Amine Boubatra, and Mohamed Sifi

Hence the left hand of (4.15) defines a bounded operator from LP(R,du,) into it-
self, provided that 4:_’“”;1 <p< 45%1. Consequently, since C.(R) is a dense subset
of LP(R,du,), the relationship (4.15) holds. According to (4.15) and by using the

generalized Minkowski inequality and [9, Lemma 5] it follows that

™

+oo
dT
[ 1ot - onilal”
0
1
+o0 T TdT T
<C / / — )Y Sarf — Sif|wpdt T
0 0
+oo ?
<C

! ,

where

K(T)=1°" / 1S2:f — S f | pdt.

Using the same method as in the proof of Theorem 4.1, we obtain

[e'e] —+o0
dt 1 rdT
r@ 1 8 B @
[y S <= [ @sas - Serln)
0 0
This gives
+oo JT % +oo JT ra
| @1t =il b €3 [ [1P0Ses = oAl
0 0
The assertion (i) holds by Theorem 4.1. O

4.3. CHARACTERIZATION
OF THE DEFORMED LIPSCHITZ HANKEL SPACES

Theorem 4.3. Let f € L*(R,du,), 0 < 8 <1 and v be such that v > 2k + 8 — 3.
Then f € A, g if and only if T?||0).f — fllx.co is bounded on (0, +00).

Proof. Assume that f € A, g. According to Proposition 3.2 we can write

@ﬂm—ﬂm:/Em@wwﬂm+T@ﬂM—ww»w4w,xeR

R
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where @7 , is given by the relation (3.1). Thus for all z € R

o3/ (@)~ §(2)

+o00
__ T*T(y+1) . . . by (4.16)
- FETaE T O/[Tyf<x>+T_yf<x>—2f<x>}m(z ) dy.

Using the fact that f € A, g and by a change of variable, we obtain

+o0
03 f(z) = f(@)| < CT~7 / [Jontr ()] £ 251t
0

From (2.1) and (2.2) we deduce that jo,4, and y"”‘%"‘%jg,ﬁv are bounded
on (0,400). Therefore, we obtain
1 “+o00
TPlogf — fllreo < C /t‘m“ﬁ*ldw / 22675 gt < oo,
0 1
Hence T#||07.f — fllx.00 is bounded on (0, +00).

Conversely, suppose that T?||0.f — f||x.00 is bounded on (0, +00). According to
(3.3), Theorem 2.13 (ii) and the Holder inequality, we get for all T' > 0

f||.‘£,2'

lozflls.co < I1Pylx.2]

Hence,

K,00 < CT?ﬂ + ||(I>T7’Y|

1£ll.00 < llogf = fllx.co + llog.f] w2l fllk,2-

This means that f in L>°(R,du, ). We define the operator A on L*(R, dpu,) as follows

A(f,x,t) =T, f(x) +TE, f(x) —2f(x), t>0,z€R.

Under the condition y > 2k — %, we obtain from Lemma 3.5 and relation (2.10) of [12],
for almost every t € R, x > 0,

—+oo
A(f,z,t)log2 = /A(J;Tf—o%f,x,t)%. (4.17)
0

It follows from Theorem 2.13 (ii) that
1A f = opf, 2 ) llnoe < 24k +2)l03pf =07 fllroe, #>0,T>0.  (4.18)

We choose a smooth function ¢ on R, such that ¢(y) = 1if |y| < 1, and ¢(y) =0
if [y| > 2. Put ¢ = Frp and ¢ (y) = €**1)(ey) for every € > 0 and y € R. One can
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verify that F.v(y) = ¢ (¥) for every y € R and € > 0. So Fte(y) = 1 if [y| < e. By
combining Theorem 2. 13 (iii) and (v) with (3.3), we can write, for all "> 0,¢ > 0,

Alogrf = opfix,t) = (T ber + T2 ot — 2¢21) 4 (097 f — o7 f).
Therefore, from Theorem 2.13 (iv) we get

IA(o3rf — oFfr 2, )]l m00 < | T bor + T

=07 k.00 (4.19)

where T' > 0, ¢ > 0. Then, acting in the same manner as in [10, Corollary 2.2], relation
(4.19) yields

HA(U;TJC - G%fa ‘Trt)”fﬂ,oo < CtTHU;Tf - U%f||ﬁ7007 > O7T > 0. (420)

By using the relations (4.17), (4.18), (4.20), we obtain, for ¢t > 0,

[ +o0
dT
N o L i e ey B e e
0

Thus by taking into account of the boundedness of T7(|o7.f — f||x.c0 on (0, +00) we
get for all ¢ > 0,

+oo

ITEf+ T f = 2flleoe <CQt [ TPdT + / T-9-14T § < CtP.

O\H‘H

1
t

This means that f € A, g. O

4.4. THE CASE OF DEFORMED LIPSCHITZ-HANKEL SPACES A, :

Now we deal with the Lipschitz—Hankel space A, ;. In this case we must modify
Theorem 4.3 into the following weaker form.

Theorem 4.4. Let f be a function in A,y N L*(R,du.) and v > 2k — § Then,
as T — 400, we have

O(+) if v>2k+ 1,

0 (TZ"’V*%) if 2k—1<y<2k+41

Proof. Let T € (1,+00). From the relations (2.1) and (2.2) we can assert that
1. € L*(R,du,). Then from (4.16), for = € R, we get

opf(x) = flz) = C(L + I + I3),
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where C' does not depend on T and

Lo=T [[T7f(x) + T, f(2) = 2f (2)] 2w~ 2V |y T)y* " dy,

— T

Ly =T [Ty f(x) + T%, () = 2f (2)]jan+~ 2V [y T)y* ' dy,

+ "

oo

L=T% | [Ty f(x)+ T8, f(2) = 2f (2)]jons~ 2V 1y T)y™ ' dy.

‘ﬂ\

Since jox i and y*t 325, are bounded on (0,+00), we obtain

1
nl= 5 (4.21)
L] < CT?* 743, (4.22)
and
Is| < T2 3, (4.23)
The result follows from (4.21), (4.22) and (4.23). O

4.5. APPROXIMATION RESULT
IN DEFORMED LIPSCHITZ-HANKEL SPACES

Finally, we prove an approximation result for the functions belonging to A, g,
0 < 8 < 1, involving deformed partial Hankel integrals. To this end, we first prove the
following lemma.

Lemma 4.5. LetT > 0 and f € L*(R,du,). For1 < p < +oco such that k < 1—|%—% ,
we have

1
P

T

1

7 [1sf@Par] <Clfluw R (1.24)
0

where C' does not depend on T and x.

Proof. For v > 0 and = € R, the deformed partial Hankel integral S, f(x) can be
written as

S, (x) = / T §(2), (2)dpin(2)
R

—+oo
Z/QIQ

ey | TG/
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So we obtain

T

1 b 1

T/|Suf(x)| dyfm(zh‘i’Jg),
0

where
p

Ji / 2)jor (2¢/20) 2% tdz| v*FPdy,

Nl

St~

p

0

+

/ T;f(Z)JQH(Q\/a)ZQK71dy 1/2de1/,
1

T

&
Il
N[ =
Ot~

Using the elementary inequality [jo,(t)| < 1, ¢ > 0, and Theorem 2.13 (ii) we get

T

)< (A ”f”m) / " dv < ClfII.

0

To estimate Jo we assume that p > 2 and take ¢ such that % + % = 1. From the
asymptotic behavior of the Bessel function (see [18]), we have

(21)F Jow (2/20) = \f cos (2v/z0 — T — k) +0(2V70)
= cos (2v/zv) cos ( + mr) + sin (2y/zv) sin (% + mr) +0(2v/2v),

where

. 1
A if 2 < £,

0(2v2v)] < {

and A and B are two positive constants. Thus,

) 2VT
SO 5 / o1 ()P + 2 (V)P + @3 (V)P + [pa(v)|P] dv |,

0
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where
+oo

pr(v) = vid / T" f(2)2" % cos (2v/zv) dz,

bo(v) =11 [ THf(2)2" 1sin (2v/zv) dz,

. ’i\-é— E

Ga(v) = v~ 1 [ TEf(2)2" dz,

H\H\

+00
da(v) = phi / T;f(z)z“_%dz.
v
By a change of variable, we obtain
+o0
r(v) = w3 / T2 F(y%)y? % cos (2y\/v) dy = 20" 7 Fo(ipa) (2V/0),
VT

and

B2 (v) = 20571 Fy(0,) (2VD),

where ,
@2 (y) = T0 f(W2)y*" 2 Ly 4oof (1),

and F., F, are the cosine and sine Fourier transforms.
By a change of variable and using the Hausdorff—Young inequality we get

) T 2VT
7 [1owrar <crt=rt [z e)or
0 0

S W e
_1
Vs
= C| fII%, o
provided that 2x < % + ]l? —1— |% _ 1%|
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In the same manner we get

T

1

7 [1e0rar <cisiz..
0

providedthat2&<%—1—%:1—%—%.
In addition, we have
T

T
1 U [, vyt
— p < L - — < p
7 [1eapar < == [ (1= 2) " a < oy
0

0

On the other hand, under the hypothesis 2x < % + %, we obtain that xk < % and

T T oo
7 [lnwrar < Zisig o [t [ iar < Ui .
0 0 1

Hence (4.24) holds in this case.
Assume now that 1 < p < 2. Let ¢ the real number verifying % + % =1, then ¢ > 2
and the Holder inequality yields

T % T %
1 1
f/|5uf($)|pdV < T/|Sl,f(x)|qdu
0 0
Applying the same method for ¢ instead of p, it follows that (4.24) holds provided
1_3_1 11
that2n<%+5:§_5:1_\§_5_ -
Theorem 4.6. Let 0 < B < 1 and f € Ayp N L*(R,duy). If 1 < p < % and
y<i-|i-1|, then
1 r »
T / 150 = FlFdv <CT™, T € (0,+00).
0

Proof. Choose v > max{2k + 28 — 1,1}. According to (4.14), we are able to write for
every U > 0 and x € R,

1
3

2U
1 p —
& [ 180w - f@par | -
U

1
P

Lh(@) + o f(x) — fa)|Pdy
)

IN

v N@)Pdv |+ llog f = flla.so-

1 2U
(U/|Su(fa
U
1 2U
(U/|Sl/(f_a
U
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By virtue of Lemma 4.5, it follows that

=

2U % 2U
= [1sus—app@par| < |4 [15.6 - o @
U 0

< C||03f — fllx,00-
Therefore, Theorem 4.3 yields

2U

1

ﬁ/wu(f—agf)(x)v’du <CUP, U>0z€eR.
U

So

1
P

2U
%/\Suf(x) — f(x)Pdv | <CUP.
U

It follows that, for every n € N, z € R and T' > 0, we have

% 1S, f(x) — f(z)|Pdv < T~ PA2PA-1)(n+1),

H\gﬁ

2n+1

onl

Consequently, for every z € R and 7' > 0, we obtain

1 ’ , 9(pB—1) o8
T / |Sl,f(.%') - f(x)‘ dv < CWT
0
This completes the proof. ]
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