PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A hybrid model for modelling the salinity of the Tafna River in Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Hybrydowy model służący modelowaniu zasolenia rzeki Tafna w Algierii
Języki publikacji
EN
Abstrakty
EN
In this paper, the capacity of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) for predicting salinity of the Tafna River is investigated. Time series data of daily liquid flow and saline concentrations from the gauging station of Pierre du Chat (160801) were used for training, validation and testing the hybrid model. Different methods were used to test the accuracy of our results, i.e. coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (E), root of the mean squared error (RSR) and graphic techniques. The model produced satisfactory results and showed a very good agreement between the predicted and observed data, with R2 equal (88% for training, 78.01% validation and 80.00% for testing), E equal (85.84% for training, 82.51% validation and 78.17% for testing), and RSR equal (2% for training, 10% validation and 49% for testing).
PL
W pracy badano zdolność systemu wnioskowania rozmytego opartego na adaptacyjnej sieci (ANFIS) do przewidywania zasolenia rzeki Tafna. Do trenowania, oceny i testowania modelu hybrydowego wykorzystano serie pomiarów dobowych przepływów płynu i stężeń soli ze stacji pomiarowej w Pierre du Chat (160801). Dokładność wyników testowano za pomocą: współczynnika determinacji (R2), współczynnika wydajności Nasha–Sutcliffe’a (E), pierwiastka średniego błędu kwadratowego (RSR) i technik graficznych. Model dał zadowalające wyniki i wykazywał dobrą zgodność między danymi obserwowanymi a przewidywanymi: R2 (88% w przypadku uczenia sieci, 78.01% walidacji i 80.00% testowania), E (85.84% w przypadku uczenia sieci, 82.51% walidacji i 78.17% testowania) i RSR (2% w przypadku uczenia sieci, 10% walidacji i 49% testowania).
Wydawca
Rocznik
Tom
Strony
127--135
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • University M'hamed Bougara, Faculty of Sciences, Department of Agronomy, 35000 Boumerdes, Algeria
  • Tipaza University Center, Agricultural Water Management Laboratory, El Harrach, Algiers, Algeria
  • Saad Dahlab University, Department of Rural Engineering, Blida, Algeria
  • National School of Public Works, LTPiTE Laboratory, Kouba, Algiers, Algeria
autor
  • National Water Resources Agency, Algiers, Algeria
autor
  • University 20 August 1955, Faculty of Science, Agronomy Department, Hydraulics Division, Skikda, Algeria
Bibliografia
  • ALVISI S., MASCELLANI G., FRANCHINI M., BARDOSSY A. 2006. Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrology and Earth System Sciences. Vol. 10. Iss. 1 p. 1–17.
  • AVCI E. 2008. Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system. Applied Soft Computing. Vol. 8. Iss. 1 p. 225–231. DOI 10.1016/j.asoc.2007.01.003.
  • BOUZERIA H., GHENIM A.N., KHANCHOUL K. 2017. Using artificial neural network (ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria. Journal of Water and Land Development. No. 33 p. 47–55. DOI 10.1515/jwld-2017-0018.
  • BUCKLEY J.J., HAYASHI Y. 1994. Fuzzy neural networks. Fuzzy sets and Systems. Vol. 66 p. 1–13. DOI 10.1016/0165-0114(94)90297-6.
  • BURAGOHAIN M., MAHANTA C. 2008. A novel approach for ANFIS modeling based on full factorial design. Applied Soft Computing. Vol. 8. Iss. 1 p. 609–625. DOI 10.1016/j.asoc.2007.03.010.
  • CHANG F.J., CHANG Y.T. 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources. Vol. 29 p. 1–10. DOI 10.1016/j.advwatres.2005.04.015.
  • CHEN S.H., JAKEMAN A.J., NORTON J.P. 2008. Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation. Vol. 78. Iss. 2–3 p. 379–400.
  • CHENNAKESAVA R.A. 2008. Fuzzy logic and neural networks, basic concepts and applications. New Delhi. New Age Publishers. ISBN 8122421822 pp. 257.
  • FASHI F.H. 2016. Evaluation of adaptive neural-based fuzzy inference system approach for estimating saturated soil water content. Modeling Earth Systems and Environment. Vol. 2. Iss. 4 p. 1–6. DOI 10.1007/s40808-016-0255-y.
  • FULLER R. 2000. Introduction neuro-fuzzy systemes. Ser. Advances in Intelligent and Soft Computing. Vol. 2. Heidelberg. Physica Verl. Springer. Springer Verl. Comp. pp. 289.
  • JANG J.R.S. 1993. ANFIS. Adaptive-network-based fuzzy inference systems. IEEE Transaction on Systems, Man, and Cybernetics. Vol. 23. No. 3 p. 665–685. DOI 10.1109/21.256541.
  • JANG J.S.R., SUNI C.T., MIZUTANI E. 1997. Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. IEEE Transactions on Automatic Control. Vol. 42. Iss. 10 p. 1482–1484.
  • KESKIN M.E., TAYLAN D., TERZI Ö. 2006. Adaptive neural-based fuzzy inference system (ANFIS). Approach for modelling hydrological time series. Hydrological Sciences-Journal des Sciences Hydrologiques. Vol. 51 p. 588–598. DOI 10.1623/hysj.51.4.588.
  • KESKIN M.E., TAYLAN D., ZLEM T.Ö. 2010. Adaptive neuralbased fuzzy inference system (ANFIS). Approach for modelling hydrological time series. Hydrological Sciences Journal. Vol. 51. Iss. 4 p. 588–598. DOI 10.1623/hysj.51.4.588.
  • KISI O. 2006. Daily pan evaporation modelling using a neurofuzzy computing technique. Journal of Hydrology. Vol. 329 p. 636–646. DOI 10.1016/J.JHYDROL.2006.03.015.
  • KOUJOK M.E., GOURIVEAU R., ZERHOUNI N. 2008. Towards a neuro-fuzzy system for time series forecasting in maintenance applications. 17th IFAC Word Congress, Seoul Korea. DOI 10.3182/20080706-5-KR-1001.02174.
  • MAHABIR C., HICKS F., FAYEK F.R. 2006. Neuro-fuzzy river ice breakup forecasting system. Cold Regions Science and Technology. Vol. 46 p. 100–112. DOI 10.1016/j.coldregions.2006.08.009.
  • MAMDANI E.H., ASSILIAN S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies. Vol. 7 p. 1–13. DOI 10.1016/S0020-7373(75)80002-2.
  • MARASHI M., TORKASHVAND A.M., AHMADI A., ESFANDYARI M. 2018. Adaptive neuro-fuzzy inference system: Estimation of soil aggregates stability. Acta Ecologica Sinica. In press. DOI 10.1016/j.chnaes.2018.05.002.
  • MELLITA A., KALOGIROU S.A. 2008. Artificial intelligence techniques for photovoltaic applications: A review. Progress in Energy and Combustion Science. Vol. 34. Iss. 5 p. 574–632.
  • MINH D. B., KEIVAN K., PETER R. 2017. Performance analysis of different model architectures utilized in an adaptive neuro fuzzy inference system for contraction scour prediction. IOSR Journal of Mechanical and Civil Engineering. Vol. 14. Iss. 3 p. 18–32. DOI 10.9790/1684-1403051832.
  • MOHANDES M., REHMAN S., RAHMAN S.M. 2011. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Applied Energy. Vol. 88 p. 4024–4032. DOI 10.1016/j.apenergy.2011.04.015.
  • NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual model. Part 1. A discussion of principles. Journal of Hydrology. Vol. p. 282–290.
  • NAYAK P.C., SUDHEER K.P., RANGAN D.M., RAMASASTRI K.S. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology. Vol. p. 52–66. DOI 10.1016/j.jhydrol.2003.12.010.
  • OPREA M., POPESCU M., MIHALACHE S.F., DRAGOMIR E.G. 2017. Data mining and ANFIS application to particulate matter air pollutant prediction. A comparative study. Proceedings of the 9th International Conference on Agents and Artificial Intelligence. Vol. 2 p. 551–558. DOI 10.5220/0006196405510 558.
  • SENGUR A. 2008. Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification. Expert Systems with Applications. Vol. 34 Iss. 3 p. 2120–2128. DOI 10.1016/j.eswa.2007.02.032.
  • SHAFAEI M., ADAMOWSKI J., FAKHERI-FARD A., DINPASHOH Y., ADAMOWSKI K. 2016. A wavelet-SARIMA-ANN hybrid model for precipitation forecasting. Journal of Water and Land Development. No. 28 p. 27–36. DOI 10.1515/jwld-2016-0003.
  • SKORBIŁOWICZ M. 2009. Wykorzystanie techniki sztucznych sieci neuronowych (ANN) do prognozowania stężenia mineralnych form azotu w wodach górnej Narwi [Adaptive neurofuzzy inference system: Estimation of soil aggregates stabilit]. Woda-Środowisko-Obszary Wiejskie. T. 9. Z. 25 p. 129–140.
  • SKVORTSOVA M., TEREKHOV V., GROUT V. 2017. A hybrid intelligent system for risk assessment based on unstructured data. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 01–03.02.2017 St. Petersburg, Russia. DOI 10.1109/EIConRus.2017.7910616.
  • SUGENO M., KANG G.T. 1988. Structure identification of fuzzy model. Fuzzy Sets and Systems. Vol. 28. Iss. 1 p. 15–33. DOI 10.1016/0165-0114 (88)90113-3.
  • SUPARTA W., ALHASA K.M. 2013. A comparison of ANFIS and MLP models for the prediction of perceptible water vapor. IEEE international conference on space science and communication (IconSpace) p. 243–248. 01–03.07.2013 Melaka, Malaysia. DOI 10.1109/IconSpace.2013.6599473.
  • SUPARTA W., ALHASA K.M. 2016. Modeling of tropospheric delays using ANFIS. Springer Briefs in Meteorology. Springer International Publ. ISBN 978-3-319-28435-4. DOI 10.1007/978-3-319-28437-8.
  • TABARI H., KISI O., EZANI A., TALAEE P.H. 2012. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology. Vol. 444 p. 78–89. DOI 10.1016/j.jhydrol.2012.04.007.
  • TACHI S.E., OUERDACHI L., REMAOUN M., DERDOUS O., BOUTAGHANE H. 2016. Forecasting suspended sediment load using regularized neural network: Case study of the Isser River (Algeria). Journal of Water and Land Development. No. 29 p. 75–81. DOI 10.1515/jwld-2016-0014.
  • TAKAGI T., SUGENO M. 1983. Derivation of fuzzy control rules from human operator’s control action. IFAC Proceedings Volumes. Vol. 16. Iss. 13 p. 55–60.
  • TAKAGI T., SUGENO M. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics. Vol. SMC-15. Iss. 1 p. 116–132. DOI 10.1109/TSMC.1985.6313399.
  • TALEGHANIA M.S., SAEEDI A.H., DEHAGHANI S., SHAFIEEC M.E. 2017. Modeling of precipitated asphaltene using the ANFIS approach. Petroleum Science and Technology. Vol. 35. No. 3 p. 235–241. DOI 10.1080/10916466.2016.1252773.
  • ÜBEYLI E.D. 2008. Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders. Expert Systems with Applications. Vol. 34. Iss. 3 p. 2201–2209. DOI 10.1016/j.eswa.2007.02.020.
  • WANG W.Q., GOLDNARAGHI M.F., ISMAIL F. 2004. Prognosis of machine health condition using neuro-fuzzy system. Mechanical System and Signal Processing. Vol. 18 p. 813–831. DOI 10.1016/S0888-3270(03)00079-7.
  • YING L.C., PAN M.C. 2008. Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Conversation and Management. Vol. 49 p. 205–211. DOI 10.1016/j.enconman.2007.06.015.
  • ZETTAM A., TALEB A., SAUVAGE S., BOITHIAS L., BELAIDI N., SÁNCHEZ-PÉREZ J.M. 2017. Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna River (North-West Algeria). Water. Vol. 9. Iss. 3. DOI 10.3390/w9030216.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4439fad-0a9d-46c8-8481-aa58ca9f63db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.