PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Possibility of Using Sewage Sludge Pellets as Thermal Insulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The storage and disposal of sewage sludge from municipal wastewater treatment plants is becoming an increasing problem on a global scale. The attention of scientists is directed to the search for unique technologies to manage them. Firing sewage sludge in furnaces and producing lightweight aggregates and granules constitutes an innovative method of its disposal. The resulting granules could be a substitute for commonly used materials such as perlite, vermiculite, expanded clay, or LSA, and could be used as a secondary material in the construction industry, including road construction, as various types of ballast, and as an equivalent to aggregate in concretes. However, given that sewage sludge is increasingly used in biogas production, it does not completely decompose in the process and is still a problematic waste for many municipal treatment plants. Therefore, the use of sewage sludge pellets in construction, or any other industry, could revolutionize the market. The purpose of the conducted research was to evaluate the heat-insulating properties of granules produced from sewage sludge from the Municipal Wastewater Treatment Plant "Łyna" in Olsztyn used as a heat-insulating material.
Twórcy
  • Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Heweliusza 10, 10-724 Olsztyn, Poland
autor
  • Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Heweliusza 10, 10-724 Olsztyn, Poland
  • Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  • Faculty of Technology Fundamentals, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Faculty of Technology Fundamentals, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Kulikowski Ł., Piętka P. Processing sewage sludge for mineral-organic fertilizer on the mobile platform. Inżynieria Ekol. 2019; 20: 38–44. (in Polish) DOI: 10.12912/23920629/106205.
  • 2. Henclik, A., Kulczycka, J., Gorazda, K., Wzorek, Z. Conditions of sewage sludge management in Poland and Germany. Inżynieria i Ochr. Środowiska 2014; 17:185–197. (in Polish).
  • 3. Klaczyński E. Management of municipal sewage sludge – plans and action strategy? Forum Eksploatatora 2020; 2: 40–43. (in Polish).
  • 4. Rosiek K. Directions and challenges in the management of municipal sewage sludge in Poland in the context of the circular economy. Sustain 2020; 12(9): 3686. DOI: 10.3390/su12093686.
  • 5. Local Data Bank Available online: https://bdl.stat.gov.pl/bdl/dane/podgrup/tablica. (Accessed 15.11.2022).
  • 6. Środa K., Kijo-Kleczkowska A., Otwinowski, H. Methods of disposal of sewage sludge. Arch. Waste Manag. Environ. Prot. 2013; 15: 33–50.
  • 7. Przydatek G., Wota A.K. Analysis of the comprehensive management of sewage sludge in Poland. J. Mater. Cycles Waste Manag. 2020; 22: 80–88. DOI:10.1007/s10163–019–00937-y.
  • 8. The Regulation of the Minister of Environment on the on the Municipal Sewage Sludge (own translation)– Rozporządzenie Ministra Środowiska z dnia 6 lutego 2015 r. w sprawie komunalnych osadów ściekowych; O.J. 2015 poz. 257.
  • 9. CECCEC 1986 Commission of European Communities Council Directive 86/278/EEC of 4 July 1986 on the protection of the environment and in particular of the soil, when sewage sludge is used in agriculture.
  • 10. Macherzyński B., Włodarczyk-Makuła M., Skowron-Grabowska B., Starostka-Patyk M. Degradation of PCBs in sewage sludge during methane fermentation process concerning environmental management. Desalin. Water Treat. 2016; 57: 1163–1175. DOI: 10.1080/19443994.2014.988407.
  • 11. Borowski G., Gajewska M. Haustein E. Possibilities of managing ashes from thermal processing of sewage sludge in fluidized bed boilers. Inżynieria i Ochr. środowiska. 2014; 17: 393–402. (in Polish) .
  • 12. Schnell M., Horst T., Quicker P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manage. 2020; 263: 110367. DOI: 10.1016/j.jenvman.2020.110367.
  • 13. Pavlík Z., Fořt J., Záleská M., Pavlíková M., Trník A., Medved I., Keppert M. Koutsoukos P.G., Černý R. Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 2016; 112: 409–419, DOI: https://doi.org/10.1016/j.jclepro.2015.09.072.
  • 14. Pavlík Z., Pavlíková M., Záleská M., Łagód G., Suchorab Z., Guz L. Life cycle assessment of the use of sewage sludge as Portland cement replacement. IOP Conf. Ser. Mater. Sci. Eng. 2019; 710. DOI: 10.1088/1757–899X/710/1/012038.
  • 15. Tsybina A., Wuensch C. Analysis of sewage sludge thermal treatment methods in the context of circular economy. Detritus. 2018; 2: 3–15. DOI: 10.31025/2611–4135/2018.13668.
  • 16. Borowski G. Application of vitrification method for the disposal of municipal sewage sludge. Rocz. Ochr. Sr. 2013; 15: 575–583.
  • 17. Rosik-Dulewska C., Nocoń K., Karwaczyńska U. Production of granules from municipal sewage sludge and fly ashes for their natural (fertilising) recovery; IPIŚ PAN: Zabrze, 2016.
  • 18. Jordán M.M., Almendro-Candel M.B., Romero M., Rincón J.M. Application of sewage sludge in the manufacturing of ceramic tile bodies. Appl. Clay Sci. 2005; 30: 219–224. DOI: 10.1016/j.clay.2005.05.001.
  • 19. González-Corrochano B., Alonso-Azcárate J., Rodas M. Production of lightweight aggregates from mining and industrial wastes. J. Environ. Manage. 2009; 90: 2801–2812. DOI: 10.1016/j.jenvman.2009.03.009.
  • 20. Suchorab Z., Barnat-Hunek D., Franus M., Lagód G. Mechanical and physical properties of hydrophobized lightweight aggregate concrete with sewage sludge. Materials 2016; 9. DOI: 10.3390/ma9050317.
  • 21. Suchorab Z., Barnat-Hunek D., Franus M. Analysis of Heat-Moisture Properties of Hydrophobised Gravelite-Concrete With Sewage Sludge 2016; 10: 14–16, DOI: 10.2429/proc.2016.10(1)010.
  • 22. Uzunow E. Sewage sludge in the production of building materials. Wodociągi – Kanaliz 2009; 10: 20–23.
  • 23. PN-EN 933–1:2012. Tests for geometrical properties of aggregates – Part 1: Determination of particle size distribution – Sieving method.
  • 24. PN-EN 933–2:1999.Tests for geometrical properties of aggregates – Part 2: Determination of particle size distribution – Test sieves, nominal size of apertures.
  • 25. PN-EN 12667:2002. Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Products of high and medium thermal resistance.
  • 26. Wójcik R., Kosiński P. Influence of compaction on the value of thermal conductivity coefficient of mineral wool in a loose state. Izolacje 2011; 16: 18–20. (in Polish).
  • 27. Kisilewicz T., Królak E., Pieniążek E. Thermal physics of buildings: textbook for students of technical universities. Wydaw. Politechniki Krakowskiej im. Tadeusza Kościuszki: Kraków 1998.
  • 28. Torgerson W.S. Multidimensional scaling: I. Theory and method. Psychometrika 1952; 17, 401–419. DOI: 10.1007/BF02288916.
  • 29. Mead A. Review of the Development of Multidimensional Scaling Methods. Stat. 1992; 41: 27. DOI: 10.2307/2348634.
  • 30. Borg I., Groenen P. Modern Multidimensional Scaling; Springer Series in Statistics; Springer New York: New York, NY, 2005.
  • 31. Kruskal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964; 29: 1–27. DOI: 10.1007/BF02289565.
  • 32. Shepard R.N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika. 1962; 27: 125–140, DOI: 10.1007/BF02289630.
  • 33. Borg I., Groenen P.J.F., Mair P. Applied Multidimensional Scaling; SpringerBriefs in Statistics; Springer Berlin Heidelberg: Berlin, Heidelberg 2013.
  • 34. Dugard P., Todman J., Staines H. Approaching Multivariate Analysis; Routledge: London, 2022.
  • 35. Grzegorczyk-Frańczak M., Barnat-Hune, D., Andrzeju, W., Zaburko J., Zalewska M., Łagód G. Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases. Materials 2021; 14: 1902. DOI: 10.3390/ma14081902.
  • 36. Dąbek L., Picheta-Oleś A., Szeląg, B. Szulżyk-Cieplak J., Łagód G. Modeling and Optimization of Pollutants Removal during Simultaneous Adsorption onto Activated Carbon with Advanced Oxidation in Aqueous Environment. Materials 2020; 13: 4220. DOI: 10.3390/ma13194220.
  • 37. Grzegorczyk-Frańczak M., Barnat-Hunek D., Materak K., Łagód G. Influence of Water with Oxygen and Ozone Micro-Nano Bubbles on Concrete Physical Properties. Materials 2022; 15: 7938. DOI: 10.3390/ma15227938.
  • 38. Bergmann Tiest W.M., Kappers A.M.L. Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol. (Amst). 2006; 121: 1–20. DOI: 10.1016/j.actpsy.2005.04.005.
  • 39. R Core Team R: A Language and Environment for Statistical Computing 2021.
  • 40. RStudio Team RStudio: Integrated Development Environment for R 2022.
  • 41. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J. et al. Welcome to the Tidy-verse. J. Open Source Softw. 2019; 4: 1686. DOI: 10.21105/joss.01686.
  • 42. Wickham H. ggplot2: Elegant graphics for data analysis; Springer-Verlag New York, 2016.
  • 43. Venables W.N., Ripley B.D. Modern Applied Statistics with S; Statistics and Computing; Springer New York: New York, NY, 2002.
  • 44. Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Solymos P., Stevens. M.H.H., Szoecs E., et al. vegan: Community Ecology Package 2022.
  • 45. Kosiński P., Brzyski P., Duliasz B. Moisture and wetting properties of thermal insulation materials based on hemp fiber, cellulose and mineral wool in a loose state. J. Nat. Fibers 2020; 17: 199–213. DOI: 10.1080/15440478.2018.1477086.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b44273bb-af33-4ea9-a281-884096fd9ee5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.