PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ procesu filtracji na relację między ilością substancji organicznych i związków biogennych w ściekach mleczarskich

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The influence of the filtration process on the content of organic compounds in relation to the concentration of nutrients in dairy wastewater
Języki publikacji
PL
Abstrakty
EN
Nowadays, high effective carbon, nitrogen and phosphorus removal based on activated sludge is the most popular method of dairy wastewater treatment. In activated sludge systems efficient nutrient compounds removal is determined by the quantity and quality of easily available forms of organic carbon. For both biological phosphorus removal and biological nitrogen removal to occur, an easily biodegradable carbon source must be present in the treating wastewater. The organic compounds used in the processes of denitrification and enhanced biological phosphorus removal (EBPR) usually are presented in treating wastewater, what is called an internal source of carbon. However, many industrial wastewater, including dairy wastewater, very often do not have sufficient amounts of carbon, in relation to the concentration of nitrate and phosphates, to ensure efficient both denitrification and biological dephosphatation processes. When biological nitrogen and phosphorus removal is limited by the availability of easily biodegradable forms of organic carbon a supplemental carbon source must be add to the wastewater, hence so-called external source of carbon should be applied to provide energy necessary for the nutrient removing bacteria to grow and perform their work. One of the most popular sources of organic carbon is acetic acid, which is one of the best available forms of carbon by denitrifying bacteria and those accumulating polyphosphates (PAO). Apart from acetic acid and acetates use is made of a number of the volatile fatty acids (VFA), including propionic acid, butyric acid, valeric acid, and such substrates as: glucose, methanol or ethanol. Since the use of chemical compounds in the form of technical products (e.g. acetic acid, citric acid) is generally expensive, cost-saving solutions are sought. According to literature data, wastewater with high COD/(N + P) ratio after acidogenic fermentation can be used as an external source of VFA in wastewater with low concentrations of easily available organic compounds treatment. The aim of this study was to determine the influence of the filtration process on the content of organic compounds (measured as COD) in relation to the concentration of nutrients (measured as the sum of TKN and TP) in process dairy wastewater, in terms of the possibility of effective VFA production. It was observed, that filtration process ensures improvement of the COD/(N + P) ratio only in wastewater from the selected sections of dairy production. The best result, if percentage increase of the COD/(N + P) ratio is considered, was obtained for the wastewater from butter production. Densification of wastewater from butter production resulted in 95% increase of the COD/(N + P) ratio without a significant increased nutrient concentration. Filtration process provided the highest COD/(N + P) ratio (219,18 mg O2/(mg N + mg P)) and reduced both nitrogen and phosphorus concentrations in the permeate from the apparatus room. The results obtained suggest, that acidogenic fermentation of wastewater from the apparatus room and butter production with high COD/(N + P) ratio can serve as an external source of VFA in biological wastewater treatment process of wastewater with low concentrations of easily available organic compounds, which ensures effective nitrogen and phosphorus removal.
Rocznik
Strony
1411--1425
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
Bibliografia
  • 1. Bartkiewicz B.: Oczyszczanie ścieków przemysłowych. PWN, Warszawa, 2002.
  • 2. Bengtsson S., Hallquist J., Werker A., Welander T.: Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochemical Engineering Journal, 3, 40, 492–499 (2008).
  • 3. Christensson M., Lie E., Welander T.: A comparison between ethanol and methanol as carbon sources for denitrification. Water Science Technology, 6, 30, 83–90 (1994).
  • 4. Danalewich J.R., Papagiannis T.G., Belyea R.L., Tumbleson M.E., Raskin L.: Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Research, 12, 32, 3555–3568 (1998).
  • 5. Demirel B., Yenigun O., Onay T.T.: Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 8, 40, 2583–2595 (2005).
  • 6. Elefsiniotis P., Li D.: The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 2, 28, 148–155 (2006).
  • 7. Elefsiniotis P., Wareham D.G., Smith M.O.: Use of volatile fatty acids from an acid-phase digester for denitrification. Journal of Biotechnology, 3, 114, 289–297 (2004).
  • 8. Heaven M.W., Wild K., Verheyen V., Cruickshank A., Watkins M., Nash D.: Seasonal and wastewater stream variation of trace organic compounds in a dairy processing plant aerobic bioreactor. Bioresource Technology, 102, 7727–7736 (2011).
  • 9. Henze M., Harremoes P.: Characterization of wastewater. Chemical water and wastewater treatment II. 5th Gothenburg Symp., Nice, 313–328 (1992).
  • 10. Her J.J., Huang J.S.: Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresource Technology, 1, 54, 45–51 (1995).
  • 11. Hollender J., van der Krol D., Kornberger L., Gierden E., Dott W.: Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor. World Journal of Microbiology and Biotechnology, 4, 18, 359–364 (2002).
  • 12. Hood C.R., Randall A.A.: A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates. Water Research, 11, 35, 2758–2766 (2001).
  • 13. Horiuchi J.I., Shimizu T., Tada K., Kanno T., Kobayashi M.: Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technology, 3, 82, 209–213 (2002).
  • 14. Ince O.: Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Research, 9, 32, 2707–2713 (1998).
  • 15. Janczukowicz W.: Usuwanie fosforu ze ścieków mleczarskich w bioreaktorze sekwencyjnym w obecności wybranych lotnych kwasów tłuszczowych (LKT). UWM, Olsztyn, 2005.
  • 16. Janczukowicz W., Dębowski M., Pesta J.: Ścieki mleczarskie źródłem lotnych kwasów tłuszczowych (LKT). Gaz, woda i technika sanitarna, 7–8, 36–42 (2006).
  • 17. Janczukowicz W., Rodziewicz J., Thornton A., Czaplicka K.: Effect of fermented wastewaters from butter production on phosphates removal in a sequencing batch reactor. Bioresource Technology, vol 120, 34–39 (2012).
  • 18. Lee S. I., Park J. H., Ko K. B., Koopman B.: Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors. Water Research., 7, 31, 1807–1812 (1997).
  • 19. Lim S.J., Choi D.W., Lee W.G., Kwon S., Chang H.N.: Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Engineering, 6, 22, 543–545 (2000).
  • 20. Luo J., Ding L., Qi B., Jaffrin M.Y., Wan Y.: A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresource Technology, 102, 7437–7442 (2011).
  • 21. Moser-Engeler R., Udert K. M., Wild D., Siegrist H.: Products from primary sludge fermentation and their suitability for nutrient removal. Water Science Technology, 1, 38, 265–273 (1998).
  • 22. Patel J., Nakhla G.: Interaction of denitrification and P removal in anoxic P removal systems. Desalination, 1–3, 201, 82–99 (2006).
  • 23. Randall A.A., Benefield L.D., Hill W.E., Nicol J.P., Boman G.K., Jing S.R.: The effect volatile fatty acids on enhanced biological phosphorus removal and population structure in anaerobic/aerobic sequencing batch reactor. Water Science Technology, 1, 35, 153–160 (1997).
  • 24. Rozporządzenie Ministra Środowiska z dnia 24 lipca 2006 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dz.U. 2006 nr 137, poz. 984.
  • 25. Seesuriyachan P., Kuntiya A., Sasaki K., Techapun C.: Biocoagulation of dairy wastewater by Lactobacillus casei TISTR 1500 for protein recovery using micro-aerobic sequencing batch reactor (micro-aerobic SBR). Process Biochemistry, 4, 44, 406–411 (2009).
  • 26. Struk-Sokołowska J.: Zmiany udziału frakcji ChZT podczas oczyszczania ścieków komunalnych z dużym udziałem ścieków mleczarskich. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 2015–2032 (2011).
  • 27. Tchobanoglous G., Burton F.L.: Wastewater Engineering: Treatment, Disposal, and Reuse. McGraw-Hill, Inc., New York, 2002.
  • 28. Wentzel M. C., Ekama G. A., Marais G. V. R.: Process and modeling of nitrification, denitrification and biological excess phosphorus removal systems – a review. Water Science Technology, 6, 25, 59–82 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b438fb08-8417-4b70-933f-1a45e81e0549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.