PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative analysis of reaction gases or exhaust using an online process mass spectrometer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Online quantitative analysis of reaction gases or exhaust in industrial production is of great significance to improve the production capacity and process. A novel method is developed for the online quantitative analysis of reaction gases or exhaust using quantitative mathematical models combined with the linear regression algorithm of machine learning. After accurately estimating the component gases and their contents in the reaction gases or exhaust, a ratio matrix is constructed to separate the relevant overlapping peaks. The ratio and calibration standard gases are detected, filtered, normalized, and linearly regressed with an online process mass spectrometer to correct the ratio matrices and obtain the relative sensitivity matrices. A quantitative mathematical model can be established to obtain the content of each component of the reaction gases or exhaust in real time. The maximum quantification error and relative standard deviation of the method are within 0.3% and 1%, after online quantification of the representative yeast fermenter tail gas.
Rocznik
Strony
337--351
Opis fizyczny
Bibliogr. 21 poz., rys., wykr., wzory
Twórcy
autor
  • China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang 310018 China
  • National Institute of Metrology, Technology Innovation Center of Mass Spectrum for State Market Regulation, Center for Advanced Measurement Science, Beijing 100029, China
autor
  • National Institute of Metrology, Technology Innovation Center of Mass Spectrum for State Market Regulation, Center for Advanced Measurement Science, Beijing 100029, China
autor
  • National Institute of Metrology, Technology Innovation Center of Mass Spectrum for State Market Regulation, Center for Advanced Measurement Science, Beijing 100029, China
autor
  • National Institute of Metrology, Technology Innovation Center of Mass Spectrum for State Market Regulation, Center for Advanced Measurement Science, Beijing 100029, China
  • China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang 310018 China
Bibliografia
  • [1] Chew, W. & Sharratt, P. (2010). Trends in process analytical technology. Analytical Methods, 2(10), 1412. https://doi.org/10.1039/c0ay00257g
  • [2] Simon, L. L., Pataki, H., Marosi, G., Meemken, F., Hungerbühler, K., Baiker, A., & Chiu, M. (2015). Assessment of Recent Process Analytical Technology (PAT) Trends: A Multiauthor Review. Organic Process Research & Development, 19(1), 3-62. https://doi.org/10.1021/op500261y
  • [3] Andersson, R., Boutonnet, M, & Järås, S. (2012). On-line gas chromatographic analysis of higher alcohol synthesis products from syngas. Journal of Chromatography a, 1247, 134-145. https://doi.org/10.1016/j.chroma.2012.05.060
  • [4] Fan, J., Fu, C., Yin, H., Wang, Y., & Jiang, Q. (2020). Power transformer condition assessment based on online monitor with SOFC chromatographic detector. International Journal of Electrical Power & Energy Systems, 118, 105805. https://doi.org/10.1016/j.ijepes.2019.105805
  • [5] Sandoval-Bohorquez, V. S., Rozo, E. A. V., & Baldovino-Medrano, V. G. (2020). A method for the highly accurate quantification of gas streams by on-line chromatography. Journal of Chromatography a, 1626, 461355. https://doi.org/10.1016/j.chroma.2020.461355
  • [6] Bristow, T. W. T., Ray, A. D., O‘Kearney-McMullan, A., Lim, L., McCullough, B., & Zammataro, A. (2014). On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 25(10), 1794-1802. https://doi.org/10.1007/s13361-014-0957-1
  • [7] Holmes, N., Akien, G. R., Savage, R. J. D., Stanetty, C., Baxendale, I. R., Blacker, A. J., & Bourne, R. A. (2016). Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors. Reaction Chemistry & Engineering, 1(1), 96-100. https://doi.org/10.1039/C5RE00083A
  • [8] Ray, A., Bristow, T., Whitmore, C., & Mosely, J. (2018). On-line reaction monitoring by mass spectrometry, modern approaches for the analysis of chemical reactions. Mass Spectrometry Reviews, 37(4), 565-579. https://doi.org/10.1002/mas.21539
  • [9] Ferreira, B. S., Van Keulen, F., & Da Fonseca, M. M. R. (1998). Novel calibration method for mass spectrometers for on-line gas analysis. Set-up for the monitoring of a bacterial fermentation. Bioprocess Engineering (Berlin, West), 19(4), 289-296. https://doi.org/10.1007/s004490050522
  • [10] Kaiser, R. I., Jansen, P., Petersen, K., & Roessler, K. (1995). On line and in situ quantification of gas mixtures by matrix interval algebra assisted quadrupole mass spectrometry. Review of Scientific Instruments, 66(11), 5226-5231. https://doi.org/10.1063/1.1146089
  • [11] Cheng, Z., Mozammel, T., Patel, J., Lee, W. J., Huang, S., Lim, S., & Li, C. E. (2018). A method for the quantitative analysis of gaseous mixtures by online mass spectrometry. International Journal of Mass Spectrometry, 434, 23-28. https://doi.org/10.1016/j.ijms.2018.09.002
  • [12] Cheng, Z., Lippi, R., Li, C. E., Yang, Y., Tang, L., Huang, S., & Patel, J. (2019). An Experimental and Kinetic Study of the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalysts. Industrial & Engineering Chemistry Research, 58(45), 20573-20584. https://doi.org/10.1021/acs.iecr.9b04177
  • [13] Velasco-Rozo, E. A., Ballesteros-Rueda, L. M., & Baldovino-Medrano, V. G. (2021). A Method for the Accurate Quantification of Gas Streams by Online Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 32(8), 2135-2143. https://doi.org/10.1021/jasms.1c00090
  • [14] Giannoukos, S., Antony Joseph, M. J., & Taylor, S. (2017). Portable mass spectrometry for the direct analysis and quantification of volatile halogenated hydrocarbons in the gas phase. Analytical Methods, 9(6), 910-920. https://doi.org/10.1039/C6AY03257E
  • [15] Li, F., Wang, C., Zhang, Y., He, X., Zhang, C., & Sha, F. (2022). Accurate Concentration Measurement Model of Multicomponent Mixed Gases during a Mine Disaster Period. ACS Omega, 7(29), 25443-25457. https://doi.org/10.1021/acsomega.2c02391
  • [16] Watson, J. T. & Sparkman, O. D. (2007). Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation (4th ed.). Chichester, West Sussex: John Wiley & Sons Ltd.
  • [17] Batey, J. H. (2014). The physics and technology of quadrupole mass spectrometers. Vacuum, 101, 410-415. https://doi.org/10.1016/j.vacuum.2013.05.005
  • [18] Heinzle, E., Moes, J., Griot, M., Kramer, H., Dunn, I. J., & Bourne, J. R. (1984). On-line mass spectrometry in fermentation. Analytica Chimica Acta, 163, 219-229. https://doi.org/10.1016/S0003-2670(00)81510-X
  • [19] Cook, K. D., Bennett, K. H., & Haddix, M. L. (1999). On-Line Mass Spectrometry: A Faster Route to Process Monitoring and Control. Industrial & Engineering Chemistry Research, 38(4), 1192-1204. https://doi.org/10.1021/ie9707984
  • [20] Heinzle, E., Oeggerli, A., & Dettwiler, B. (1990). On-line fermentation gas analysis: Error analysis and application of mass spectrometry. Analytica Chimica Acta, 238, 101-115. https://doi.org/10.1016/S0003-2670(00)80528-0
  • [21] Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
Uwagi
1. This work was supported by the National Key Research and Development Plan of China (2021YFF0600202) and the Key Deployment Project of Center for Ocean Mega-Science, Chinese Academy of Sciences (COMS2020J10).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4325942-78f2-4468-ba57-6da4d460db5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.