PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorptive removal of cochineal red a dye from aqueous solutions using yeast

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an experimental study on Cochineal Red A dye adsorptive removal by yeast. Batchequilibrium and kinetic tests were conducted in constant temperature of 30◦C for the dye’s initialconcentration range of 0.02–0.50 g/L (pH=3and 10) and 0.02–0.35 g/L (pH=7:6). The equilibriumwas reached after 105–120 min. Yeast demonstrated the adsorption capacity of 10.16 mg/g for acidicenvironment (pH=3) and slightly lower values (8.13 mg/g and 8.38 mg/g respectively) for neutral(pH=7:6) and alkaline environment (pH=10). The experimental equilibrium results were fitted withLangmuir, Freundlich, Sips and Toth isotherm models. Most of them (Freundlich model being theexception) were proven sufficient for the experimental data correlation. The adsorption kinetic studiesshowed that the pseudo-second order model fits better the experimental data than the pseudo-first-order model. Results achieved from intra-particle diffusion model indicate that powdered yeast are anonporous adsorbent. The percentage of solution discoloration reached a maximum value of 75% atpH=3for an initial dye concentration of 0.02 g/L.
Rocznik
Strony
105–--117
Opis fizyczny
Bibliogr. 27 poz., wykr. tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technologyand Engineering, Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technologyand Engineering, Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Aksu Z., 2005. Application of biosorption for the removal of organic pollutants: A review.Process Biochem., 40,997–1026. DOI: 10.1016/j.procbio.2004.04.008.
  • 2. Basile A., Cassano A., Rastogi N.K., 2015.Advances in membrane technologies for water treatment – Materials,processes and applications. Elsevier.
  • 3. Bonilla-Petriciolet A., Mendoza-Castillo D.I., Reynel-Ávila H.E., 2017.Adsorption processes for water treatmentand purification. Springer International Publishing.
  • 4. El-Sayed G.O., 2011. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber.Desalination, 272, 225–32. DOI: 10.1016/j.desal.2011.01.025.
  • 5. Foo K.Y., Hameed B.H., 2010. Insights into the modeling of adsorption isotherm systems.Chem. Eng. J., 156,2–10. DOI: 10.1016/j.cej.2009.09.013.
  • 6. Frantz T.S., Silveira N., Quadro M.S., Andreazza R., Barcelos A.A., Cadaval T.R.S. Jr., Pinto L.A.A., 2017.Cu(II) adsorption from copper mine water by chitosan films and the matrix effects.Environ. Sci. Pollut. Res., 24,5908–5917. DOI: 10.1007/s11356-016-8344-z.
  • 7. Gerente C., Lee V.K.C., Le Cloirec P., McKay G., 2007. Application of chitosan for the removal of metalsfrom wastewaters by adsorption—mechanisms and models review.Crit. Rev. Environ. Sci. Technol., 37, 41–127.DOI: 10.1080/10643380600729089.
  • 8. Gupta V.K., Suhas, 2009. Application of low-cost adsorbents for dye removal – A review.J. Environ. Manage, 90,2313–2342. DOI: 10.1016/j.jenvman.2008.11.017.
  • 9. Heibati B., Rodriguez-Couto S., Al-Ghouti M.A., Asif M., Tyagi I., Agarwal S., Gupta V.K., 2015. Kinetics andthermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut andpoplar woods.J. Mol. Liq., 208, 99–105. DOI: 10.1016/j.molliq.2015.03.057.
  • 10. Ho Y.S., McKay G., 1999. Pseudo-second order model for sorption processes.Process Biochem., 34, 451–465.DOI: 10.1016/S0032-9592(98)00112-5.
  • 11. Ho Y.S., Porter J.F., McKay G., 2002. Equilibrium isotherm studies for the sorption of divalent metal ions ontopeat: copper, nickel and lead single component systems.Water Air Soil Pollut., 141, 1–33. DOI: 10.1023/A:1021304828010.
  • 12. Howe K.J., Hand D.W., Crittenden J.C., Trussell R.R., Tchobanoglous G., 2012.Principles of Water Treatment.John Wiley & Sons.
  • 13. Kavitha D., Namasivayam C., 2007. Experimental and kinetic studies on methylene blue adsorption by coir pithcarbon.Bioresour. Technol., 98, 14–21. DOI: 10.1016/j.biortech.2005.12.008.
  • 14. Kim T.-Y., Lee J.-W., Cho S.-Y., 2015. Application of residual brewery yeast for adsorption removal of ReactiveOrange 16 from aqueous solution.Adv. Powder Technol., 26, 267–274. DOI: 10.1016/j.apt.2014.10.006.
  • 15. Montgomery D.C., Peck E.A., Vining G.G., 2012.Introduction to Linear Regression Analysis.Wiley.
  • 16. Plazinski W., Rudzinski W., Plazinska A., 2009. Theoretical models of sorption kinetics including a surface reactionmechanism: A review.Adv. Colloid Interface Sci., 152, 2–13. DOI: 10.1016/j.cis.2009.07.009.
  • 17. Rafatullah M., Sulaiman O., Hashim R., Ahmad A. (2010). Adsorption of methylene blue on low-cost adsorbents:A review.J. Hazard. Mater., 177, 70–80. DOI: 10.1016/j.jhazmat.2009.12.047.
  • 18. Rehman S., Adil A., Shaikh A.J., Shah J.A., Arshad M., Ali M.A., Bilal M., 2018. Role of sorption energy andchemisorption in batch methylene blue and Cu2+adsorption by novel thuja cone carbon in binary componentsystem: linear and nonlinear modeling.Environ. Sci. Pollut. Res., 25, 31579–31592. DOI: 10.1007/s11356-018-2958-2.
  • 19. Rida K., Bouraoui S., Hadnine S., 2013. Adsorption of methylene blue from aqueous solution by kaolin and zeolite.Appl. Clay Sci., 83–84, 99–105. DOI: 10.1016/j.clay.2013.08.015.
  • 20. Shokoohi R., Vatanpoor V., Zarrabi M., Vatani A., 2010. Adsorption of Acid Red 18 (AR18) by activated carbonfrom poplar wood - A kinetic and equilibrium study.E-J. Chem., 7. DOI: 10.1155/2010/958073.
  • 21. Tan I.A.W., Hameed B.H., Ahmad A.L., 2007. Equilibrium and kinetic studies on basic dye adsorption by oil palmfibre activated carbon.Chem. Eng. J., 127, 111–9. DOI: 10.1016/j.cej.2006.09.010.
  • 22. Tan K.L., Hameed B.H., 2017. Insight into the adsorption kinetics models for the removal of contaminants fromaqueous solutions.J. Taiwan Inst. Chem. Eng., 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.
  • 23. Vijayaraghavan K., Padmesh T.V.N., Palanivelu K., Velan M., 2006. Biosorption of nickel(II) ions ontoSargassumwightii: Application of two-parameter and three-parameter isotherm models.J. Hazard. Mater., 133, 304–308.DOI: 10.1016/j.jhazmat.2005.10.016.
  • 24. Wang L., Zhang J., Zhao R., Li C., Li Y., Zhang C., 2010. Adsorption of basic dyes on activated carbon preparedfromPolygonum orientaleLinn: Equilibrium, kinetic and thermodynamic studies.Desalination, 254, 68–74.DOI: 10.1016/j.desal.2009.12.012.
  • 25. Worch E., 2012.Adsorption technology in water treatment - Fundamentals, processes, and modeling. De Gruyter.
  • 26. Yagub M.T., Sen T.K., Afroze S., Ang H.M., 2014. Dye and its removal from aqueous solution by adsorption:A review.Adv. Colloid Interface Sci., 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • 27. Yuh-Shan H., 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions.Scientometrics, 59,171–177. DOI: 10.1023/B:SCIE.0000013305.99473.cf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b42e64be-4432-4072-8fd0-01eb808565bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.