PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal Selection of Multicomponent Matching Layers for Piezoelectric Transducers using Genetic Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One major problem in the design of ultrasonic transducers results from a huge impedance mismatch between piezoelectric ceramics and the loading medium (e.g. gaseous, liquid, and biological media). Solving this problem requires the use of a matching layer (or layers). Optimal selection of materials functioning as matching layers for piezoelectric transducers used in transmitting and receiving ultrasound waves strictly depends on the type of the medium receiving the ultrasound energy. Several methods allow optimal selection of materials used as matching layers. When using a single matching layer, its impedance can be calculated on the basis of the Chebyshev, DeSilets or Souquet criteria. In the general case, the typically applied methods use an analogy to a transmission line in order to calculate the transmission coefficient T. This paper presents an extension of transmission coefficient calculations with additional regard to the attenuation coefficients of particular layers. The transmission coefficient T is optimised on the basis of a genetic algorithm method. The obtained results indicate a significant divergence between the classical calculation methods and the genetic algorithm method.
Rocznik
Strony
699--707
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Acoustics and Multimedia, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Computer Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • 1. Alvarez-Arenas T. E. G. (2004), Acoustic impedance matching of piezoelectric transducers to the air, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51 (5): 624-633, doi: 10.1109/TUFFC.2004.1320834.
  • 2. DeSilets C. S., Fraser J. D., Kino G. S. (1978), The design of efficient broad-band piezoelectric transducers, IEEE Transactions on Sonics and Ultrasonics, 25 (3): 115-125, doi: 10.1109/T-SU.1978.31001.
  • 3. Fang H. J. et al. (2016), Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application, Ultrasonics, 70: 29-33, doi: 10.1016/j.ultras.2016.04.003.
  • 4. Goll J. H. (1979), The design of broadband fluid-loaded ultrasonic transducers, IEEE Transactions on Sonics and Ultrasonics, 26 (6): 385-393, doi: 10.1109/T-SU.1979.31122.
  • 5. Gudra T., Opielinski K. J. (2002), Influence of acoustic impedance of multilayer acoustic system on the transfer function of ultrasonic airborne transducer, Ultrasonics, 40 (1-8): 457-463, doi: 10.1016/S0041-624X(02)00159-2.
  • 6. Hamidimioglu B., KhuriYakub B. T. (1990), Polymers films as acoustic matching layers, IEEE Symposium on Ultrasonics, Honolulu, HI, USA, Vol. 3, pp. 1337-1340, doi: 10.1109/ULTSYM.1990.171581.
  • 7. Hung B. H., Goldstein A. (1983), Acoustic parameters of comercial plastics, IEEE Transactions on Sonics and Ultrasonics, 30 (4): 249-254, doi: 10.1109/T-SU.1983.31415.
  • 8. Ilham H. M., Salim M. N., Jenal R. B., Hayashi T. (2016), Guided wave matching layer using a quarter of wavelength technique, Applied Mechanics and Materials, 833: 59-68, doi: 10.4028/www.scientific.net/AMM.833.59.
  • 9. Lynworth L. C. (1965), Ultrasonic impedance matching from solids to gases, IEEE Transactions on Sonics and Ultrasonics, 12 (2): 37-48, doi: 10.1109/T-SU.1965.29359.
  • 10. Łypacewicz G., Duriasz E. (1992), Design principles of transducers with matching layers base on admittance measurements, Archives of Acoustics, 17 (1): 117-131.
  • 11. Nakamura K. et al. (2012), Ultrasonic transducers. Materials and design for sensors, actuators, and medical applications, Woodhead Publishing Series in Electronic and Optical Materials: Number 29, Elsevier, pp. 185-219, 374-407.
  • 12. Onda Corporation (2003), Tables of Acoustic Properties of Materials, USA, http://www.ondacorp.com (accessed on 10 January 2020).
  • 13. Pedersen P. C., Tretiak P., He P. (1982), Impedance – matching properties of an inhomogeneous matching layer with continuously changing acoustic impedance, The Journal of the Acoustical Society of America, 72 (2): 327-338, doi: 10.1121/1.388085.
  • 14. Qian Y., Harris N. R. (2014), Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers, Ultrasonics, 54 (2): 586-591, doi: 10.1016/j.ultras.2013.08.012.
  • 15. Rhee S., Ritter T. A., Shung K. K., Wang H., Cao W. (2001), Materials for acoustic matching in ultrasound transducers, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), Atlanta, GA, USA, 2001, Vol. 2, pp. 1051-1055, doi: 10.1109/ULTSYM.2001.991900.
  • 16. Saffar S., Abdullah A. (2012), Determination of acoustic impedances of multi matching layers for narrow band transmitter ultrasonic airborne transduces with frequencies < 2.5 MHz – application of a genetic algorithm, Ultrasonics, 52 (1): 169-185, doi: 10.1016/j.ultras.2011.08.001.
  • 17. Saffar S., Abdullah A., Othman R. (2014), Influence of the thickness of matching layers on narrow band transmitter ultrasonic airborne transducers with frequencies <100 kHz: Application of a genetic algorithm, Applied Acoustics, 75: 72-85, doi: 10.1016/j.apacoust.2013.07.002.
  • 18. Souquet J., Defranoud P. H., Desbois J. (1979), Design of low loss wide band ultrasonic transducers for noninvasive medical applications, IEEE Transactions on Sonics and Ultrasonics, 26 (2): 75-81, doi: 10.1109/T-SU.1979.31070.
  • 19. Thomson W. T. (1950), Transmission of elastic waves through a stratified solid medium, Journal of Applied Physics, 21 (2): 89-93, doi: 10.1063/1.1699629.
  • 20. Toda M., Thompson M. (2010), Novel multi-layer polimer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57 (12): 2818-2827, doi: 10.1109/TUFFC.2010.1755.
  • 21. Toda M., Thompson M. (2012), Detailed investigations of polymer/metal multilayer matching layer and backing absorber structures for wideband ultrasonic transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59 (2): 231-242, doi: 10.1109/TUFFC.2012.2183.
  • 22. Trogé A., O’Leary R. L., Hayward G., Pethrick R. A., Mullholland A. J. (2010), Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers, The Journal of the Acoustical Society of America, 128 (5): 2704-2714, doi: 10.1121/1.3483734.
  • 23. Wang Y. et al. (2018), Magnesium alloy matching layer for high-performance transducer applications, Sensors, 18 (12): 4424, doi: /10.3390/s18124424.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b42cbd18-07a6-4586-b51b-2d79ba8014e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.