PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Petrophysical properties prediction of deep dolomite reservoir considering pore structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prediction of petrophysical properties of deep dolomite reservoir using elastic parameter data is challenging and of great uncertainty. Changes in the petrophysical properties generally induce perturbations in elastic properties. Rock-physics model, which plays a role as a bridge between petrophysical properties and elastic properties, determines the accuracy of inversion for petrophysical properties using elastic properties. Different pore structures lead to variations of rock-physics relationships, and in dolomite reservoir, the influence of pore structure on elastic properties is larger than that of petrophysical properties. We first propose a statistical rock-physics model, in which we consider the effect of pore structure on the nonlinear rockphysical relationship between petrophysical properties and elastic properties of dolomite reservoirs. Then, we propose a Bayesian inversion approach of using elastic properties to predict petrophysical properties and use weight factors to address the difference in accuracy of the input elastic properties in the Bayesian inversion framework. Examples illustrate the proposed approach may produce petrophysical properties of high accuracy for deep dolomite reservoirs.
Czasopismo
Rocznik
Strony
1507--1518
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • China University of Petroleum (East China), Qingdao 266580, China
  • Research Institute of Petroleum Exploration & Development—Northwest, Petrochina, Lanzhou 730020, Gansu, China
autor
  • China University of Petroleum (East China), Qingdao 266580, China
autor
  • Research Institute of Petroleum Exploration & Development—Northwest, Petrochina, Lanzhou 730020, Gansu, China
autor
  • Research Institute of Petroleum Exploration & Development—Northwest, Petrochina, Lanzhou 730020, Gansu, China
autor
  • Research Institute of Petroleum Exploration & Development—Northwest, Petrochina, Lanzhou 730020, Gansu, China
Bibliografia
  • 1. Adesokan H, Sun YF (2014) Rock-physics-based estimation of critical-clay-volume fraction and its effect on seismic velocity and petrophysical properties. Geophysics 79(3):D175–D185. https://doi.org/10.1190/geo2012-0510.1
  • 2. Anselmetti FS, Eberli GP (1993) Controls on sonic velocity in carbonates. Pure Appl Geophys 141(2):287–323. https://doi.org/10.1007/978-3-0348-5108-4_6
  • 3. Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk. Cambridge University Press, UK. https://doi.org/10.1017/CBO9780511600074
  • 4. Bachrach R (2006) Joint estimation of porosity and saturation using stochastic rock physics modeling. Geophysics 71(5):O53–O63. https://doi.org/10.1190/1.2235991
  • 5. Brie A, Pampuri F (1995) Shear sonic interpretation in gas-bearing sands. In: SPE annual technical conference & exhibition, https://doi.org/10.2118/30595-MS
  • 6. Dou Q, Sun Y, Sullivan C (2011) Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas. J Appl Geophys 74(1):8–18. https://doi.org/10.1016/j.jappgeo.2011.02.010
  • 7. Doyen P (2007) Seismic reservoir characterization: an earth modelling perspective. EAGE publications, Houten
  • 8. Dvorkin J, Gutierrez M, Grana D (2014) Seismic reflections of rock properties. Cambridge University Press, UK. https://doi.org/10.1017/CBO9780511843655
  • 9. Grana D, Rossa ED (2010) Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics 75(3):O21–O37. https://doi.org/10.1190/1.3386676
  • 10. Huang Q, Dou Q, Jiang Y, Zhang Q, Sun YF (2017) An integrated approach to quantify geologic controls on carbonate pore types and permeability Puguang Gas Field, China. Interpretation 5(4):T545–T561. https://doi.org/10.1190/INT-2016-0166.1
  • 11. Mallick S (2001) AVO and elastic impedance. Lead Edge 20(10):1094–1104. https://doi.org/10.1190/1.1487239
  • 12. Mavko G, Mukerji T, Dvorkin J (2003) The rock physics handbook. Cambridge University Press, UK. https://doi.org/10.1007/s00115-003-1528-z
  • 13. Nebojsa T, Nina G (2017) Well-log based rock physics template of the Vienna Basin and the underlying Calcereous Alps. Acta Geophys 65:441–451. https://doi.org/10.1007/s11600-017-0037-6
  • 14. Russell BH, Gray D, Hampson DP (2011) Linearized AVO and poroelasticity. Geophysics 76(3):C19–C29. https://doi.org/10.1190/1.3555082
  • 15. Sang L, Sun YF, Vega S, Ali MY (2015) Attenuation of P-and S-waves in lower cretaceous carbonate rocks. SEG Tech Prog Expand Abstr 2015:3074–3078. https://doi.org/10.1190/segam2015-5897423.1
  • 16. Sun YF (2004) Pore structure effect on elastic wave propagation in rocks: AVO modeling. J Geophys Eng 1:268–276. https://doi.org/10.1088/1742-2132/1/4/005
  • 17. Sun YF (2007) Upscaling of a proxy parameter for pore structure in sedimentary rocks. SEG Tech Prog Expand Abstr. https://doi.org/10.1190/1.2792811
  • 18. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Auckland. https://doi.org/10.1137/1.9780898717921
  • 19. Xu S, Payne MA (2009) Modeling elastic properties in carbonate rocks. Lead Edge 28(1):66–74. https://doi.org/10.1190/1.3064148
  • 20. Yuan SY, Wang SX, Luo YN, Wei WW, Wang GC (2018) Impedance inversion by using the low-frequency full-waveform inversion result as a priori model. Geophysics. https://doi.org/10.1190/geo2017-0643.1
  • 21. Zhang T, Sun YF (2018) Two-parameter prestack seismic inversion of porosity and pore structure parameter of fractured carbonate reservoirs: part 1—methods. Interpretation 6(4):SM1–SM8. https://doi.org/10.1190/INT-2017-0219.1
Uwagi
Korekta artykułu w Acta Geophysica Vol. 70, no. 5/ 2022. Nr DOI korekty: 10.1007/s11600-022-00868-7
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b42c57ce-f6b5-49f5-968e-dc3eb0b487c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.