PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of the ejection cooling mechanism of ventilation for a marine gas turbine enclosure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A marine gas turbine enclosure must be designed to prevent overheating of the electrical and engine control components as well as diluting potential fuel leaks. In order to achieve an optimal enclosure design, a numerical study of the ventilation-ejection cooling mechanism of a gas turbine enclosure is carried out in this paper. The evaluation index of the ejection cooling performance is first proposed and the algorithm of numerical simulation is verified. On this basis, orthogonal combinations of structural parameters are carried out for the expansion angle α of the lobed nozzle and the spacing S between the outlet plane of the lobed nozzle and the inlet plane of the mixing tube. The flow and the temperature distribution inside the enclosure are analysed under different operating conditions. The results show that the influence of the lobed nozzle expansion angle α and the spacing S on the performance is not a single-valued function but the two influencing factors are mutually constrained and influenced by each other. For any spacing, the combined coefficient is optimal for the expansion angle α = 30°. When the expansion angle α = 45° and the spacing S = 100 mm, the combined coefficient and the temperature distribution inside the enclosure are optimal at the same time.
Słowa kluczowe
Rocznik
Tom
Strony
119--127
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Jiangsu University of Science and Technology; College of Energy & Power Engineering; Zhenjiang, China
  • Jiangsu University of Science and Technology; College of Energy & Power Engineering; Zhenjiang, China
autor
  • Jiangsu University of Science and Technology; College of Energy & Power Engineering; Zhenjiang, China
autor
  • Nanjing University of Aeronautics & Astronautics; Key Laboratory of Aircraft environment control and life support, MIIT; Nanjing, China
autor
  • Nanjing University of Aeronautics & Astronautics; Key Laboratory of Aircraft environment control and life support, MIIT; Nanjing, China
Bibliografia
  • 1. N.R. Ammar and A. Farag, “CFD Modeling of Syngas Combustion and Emissions for Marine Gas Turbine Applications” Polish Maritime Research, vol.23, no.3, pp.39-49, 2016. doi: 10.1515/pomr-2016-0030.
  • 2. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units,” Polish Maritime Research, vol. 26, no. 3, 2019. doi: 10.2478/pomr-2019-0059.
  • 3. S. Serbin, K. Burunsuz, M. Dzida, J. Kowalski, and D. Chen, “Investigation of Ecological Parameters of a Gas Turbine Combustion Chamber with Steam Injection for the Floating Production, Storage, and Offloading Vessel,” International Journal of Energy and Environmental Engineering, 2021. doi: 10.1007/s40095-021-00433-w.
  • 4. S. Serbin, N. Washchilenko, M. Dzida, and J. Kowalski, “Parametric Analysis of the Efficiency of the Combined Gas-Steam Turbine Unit of a Hybrid Cycle for the FPSO Vessel,” Polish Maritime Research, vol. 28, no. 4, 2022. doi: 10.2478/ pomr-2021-0054.
  • 5. O. Kyrylash, V. Kostiuk, A. Smirnov, D. Tkachenko, and I.Loboda, “Mathematical Simulation of the Gas Turbine Packages Thermal State.” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. vol.5C, Oslo, Norway. June 11-15, 2018. doi: 10.1115/GT2018-77194.
  • 6. J. Kowalski, F. Di Mare, S. Theis, A. Wiedermann, M. Lange, and R. Mailach, “Investigation of the Ventilation Flow in a Gas Turbine Package Enclosure.” European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 2019. doi: 10.29008/ETC2019-438.
  • 7. A. Corsini, G. Delibra, M. Giovannelli, G. Lucherini, S. Minotti, S. Rossin, and L. Tieghi, «Prediction of Ventilation Effectiveness for LM9000 Package with Machine Learning.» Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. vol.9. Virtual, online. September 21-25, 2020. doi: 10.1115/GT2020-14916.
  • 8. Z. Domachowski, and M. Dzida, “Applicability of Inlet Air Fogging to Marine Gas Turbine” Polish Maritime Research, vol.26, no.1, pp.15-19, 2019. doi: 10.2478/pomr-2019-0002.
  • 9. International Standard ISO 21789:2009 Gas Turbine Applications – Safety, International Organisation for Standardization, 2009.
  • 10. G. Lucherini, V. Michelassi, and S. Minotti, “The Impact of Model Assumptions on the CFD Assisted Design of Gas Turbine Packages.” Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. vol.9. USA. June 17-21, 2019. doi: 10.1115/GT2019-90871.
  • 11. R. Yerram, R. Watkins, and B. Ponnuraj, “Aeroderivative Gas Turbine Enclosure Ventilation System.” Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. vol.2C. Virtual, online. June 7-11, 2021. doi: /10.1115/ GT2021-59136.
  • 12. D.M. Li, L. Wang, X.Y. Wen, and S.D. Cao, “Numerical Simulation and Experimental Study of Marine Combustion Engine Exhaust Ejector.” Thermal Power Engineering, vol.17, no.3, pp.226-230, 2002. doi: 10.3969/j.issn.1001-2060.2002.03.002.
  • 13. B. Ponnuraj, B. Sultanian, A. Novori, and P. Pecchi, “3D CFD Analysis of an Industrial Gas Turbine Compartment Ventilation System.” Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Heat Transfer, vol.2. Washington, DC, USA. November 15–21, 2003. pp. 67-76. ASME. doi: 10.1115/IMECE2003-41672.
  • 14. E. Graf, T. Luce, and F. Willett, “Design Improvements Suggested by Computational Flow and Thermal Analyses for the Cooling of Marine Gas Turbine Enclosures.” Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. vol.5. Reno, Nevada, USA. June 6-9, 2005. pp. 587-593. doi: 10.1115/GT2005-68574.
  • 15. G. Lucherini, S. Minotti, G. Ragni, and F. Bologna, “Experimental and Numerical Investigation on Gas Turbine Package Scale Model.” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. vol.9. Oslo, Norway. June 11-15, 2018. doi: 10.1115/GT2018-75694.
  • 16. A. Maqsood, and A.M. Birk, “Effect of a Bend on the Performance of an Oblong Ejector.” Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. vol.6. Montreal, Canada. May 14-17, 2007. pp.37-45. doi: 10.1115/GT2007-27851.
  • 17. A. Maqsood, and A.M. Birk, “Effect of Entraining Diffuser on the Performance of Bent Exhaust Ejectors.” Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. vol.7. Glasgow, UK. June 14-18, 2010. pp.2793-2802. doi: 10.1115/GT2010-23499.
  • 18. H. Hu, T. Saga, T. Kobayashi, and N. Taniguchi, “Research on the Vortical and Turbulent Structures in the Lobed Jet Flow Using Laser Induced Fluorescence and Particle Image Velocimetry Techniques.” Measurement Science & Technology, vol.11, no.6, p.698, 2000. doi: 10.1088/0957-0233/11/6/313.
  • 19. I. Nastase and A. Meslem, “Passive Control of Jet Flows Using Lobed Nozzle Geometries.” Mecanique Et Industries, vol.8, no.2, pp.101-109, 2007. doi: 10.1051/meca:2007027.
  • 20. Z.Q. Sheng, “Jet Mixing of Lobed Nozzles with Spoilers Located at Lobe Peaks.” Applied Thermal Engineering, vol.119, pp.165-175, 2017. doi: 10.1016/j.applthermaleng.2017.03.048.
  • 21. S. Varga, A.C. Oliveira, and B. Diaconu, “Influence of Geometrical Factors on Steam Ejector Performance – A Numerical Assessment.” International Journal of Refrigeration, vol.32, no.7, pp.1694-1701, 2009. doi: 10.1016/j.ijrefrig.2009.05.009.
  • 22. Z.B. Zhang, X.Y. Zhang, B.B. Li, and P. Sun, “Optimal Design of Cooling Structure of an Industrial Type Gas Turbine Enclosure Mount.” Thermal Science and Technology, vol.5, no.7, 2016. doi: 10.13738/j.issn.1671-8097.2016.05.013.
  • 23. Y.L. Han, “Numerical Simulation and Experimental Study of Marine Gas Turbine Exhaust Ejector.” Diss. Harbin Engineering University, 2005, doi: 10.7666/d.y780039.
  • 24. H. Bagheri and D. Vahidi, “Ventilation of Gas Turbine Package Enclosures: Design Evaluation Procedure.” 25th International Conference on Offshore Mechanics and Arctic Engineering, 2006.
  • 25. Y.H. Liu, “Experimental Study and Numerical Simulation of Wave Flap Induced Mixer in Hot and Cold State.” Diss. Nanjing University of Aeronautics and Astronautics, 2000. doi: 10.7666/d. y400568.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b42c2c1e-8644-4a5f-af1c-8d49edab6182
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.