PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel multi-scale convolutional network with attention-based bidirectional gated recurrent unit for atrial fibrillation discrimination

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Atrial fibrillation (AF) is a major cardiovascular disease that has affected thousands of individuals worldwide. The electrocardiogram (ECG) is the most extensively applied approach to detect AF at present, while the traditional detection strategy based on the visual observation of ECG data is often laborious and inefficient. In this work, we specially designed an intelligent recognition system based on a novel convolutional neural network that utilizes the multi-scale convolution kernel and bidirectional gated recurrent unit with attention mechanism for AF detection. Also, two standard control groups using 10-fold cross-validation were performed to assess the validity of the proposed model. The empirical results not only demonstrate the high efficiency of multi-scale convolution kernel, but also show that the model has a more superior classification performance to several state-of the-art methods with an accuracy of 98.3% and 97.7% on two public databases, respectively. Due to its high performance, we plan to develop the model into portable devices to benefit more individuals such as the elderly and athletes.
Twórcy
autor
  • School of Sports Science, Nantong University, Nantong 226019, China
autor
  • School of Sports Science, Nantong University, Nantong 226019, China
Bibliografia
  • [1] Srinivasan S, Mahta A, Kesari S. Atrial fibrillation risk and discrimination of cardioembolic from noncardioembolic stroke. QJM-Int J Med 2020;6:6.
  • [2] Okubo Y, Nakano Y, Ochi H, et al. Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. Heart Rhythm 2020;17:699–705.
  • [3] Kaplan BS, Uysal AK, Sora GE, et al. A survey on ECG analysis. Biomed Signal Process 2018;43:216–35.
  • [4] Kishore AK, Fletcher S, Mason D, et al. Quality improvement in atrial fibrillation detection after ischaemic stroke. Clin Med 2020;20(5):480–5.
  • [5] Ghosh SK, Tripathy RK, Paternina MRA, et al. Detection of atrial fibrillation from single lead ECG signal using multirate cosine filter bank and deep neural network. J Med Syst 2020;44:114.
  • [6] Czabanski R, Horoba K, Wrobel J, et al. Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors 2020;20(3).
  • [7] Sekelj S, Sandler B, Johnston E, et al. Detecting undiagnosed atrial fibrillation in UK primary care: validation of a machine learning prediction algorithm in a retrospective cohort study. Eur J Prev Cardiol 2020;. https://doi.org/10.1177/2047487320942338.
  • [8] Uittenbogaart SB, Gurp NV, Lucassen WAM, et al. Opportunistic screening versus usual care for detection of atrial fibrillation in primary care: cluster randomised controlled trial. BMJ 2020;370.
  • [9] Andres HM, Hamido F, Enrique EH, et al. Recognition of ECG signals using wavelet based on atomic functions. Biocybern Biomed Eng 2020;40:803–14.
  • [10] Jacobsen M, Dembek TA, Ziakos AP, et al. Reliable detection of atrial fibrillation with a medical wearable during inpatient conditions. Sensors 2020;20:5517.
  • [11] Henzel N, Wrobel J, Horoba K. Atrial fibrillation episodes detection based on classification of heart rate derived features. In: Mixed Design of Integrated Circuits and Systems, Mixdes-international Conference IEEE. p. 571–6.
  • [12] Kumar M, Pachori RB, Rajendra AU. Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform. Biocybern Biomed Eng 2018;38:564–73.
  • [13] Safarbali B, Golpayegani SMRH. Nonlinear dynamic approaches to identify atrial fibrillation progression based on topological methods. Biomed Signal Process 2019;53 101563.
  • [14] Buscema PM, Grossi E, Massini G, et al. Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems. Comput Meth Prog Bio 2020;191 105401.
  • [15] Zhou Y, Hong S, Shang J, et al. K-margin-based residual-convolution-recurrent neural network for atrial fibrillation detection; 2019. Preprint arXiv:1908.06857.
  • [16] Li G, Gavin S, Bogdan M. Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybern Biomed Eng 2019;39:868–79.
  • [17] Erdenebayar U, Kim H, Park JU, et al. Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal. J Korean Med Sci 2019;34(7).
  • [18] Lee KS, Jung S, Gil Y, et al. Atrial fibrillation classification based on convolutional neural networks. BMC Med Inform Decis 2019;19.
  • [19] LeCun Y, Bengio Y, Hinton G, et al. Deep learning. Nature 2015;521:436–44.
  • [20] Mohammed R, Andrew JF, Nader MA, et al. Meta-analysis of atrial fibrillation ablation in patients with systolic heart failure. Cardiovasc Res 2019;2019:8181657.
  • [21] Acharya UR, Fujita H, Lih OS, et al. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inform Sci 2017;405:81–90.
  • [22] Pourbabaee B, Roshtkhari MJ, Khorasani K. Deep convolution neural networks and learning ECG features for screening paroxysmal atrial fibrillatio patients. IEEE T Syst Man Cy-S 2017:1–10.
  • [23] Yuki H, Hamido F, Lih OS, et al. Computer-aided diagnosis of atrial fibrillation based on ECG signals: A review. Inform Sci 2018;467:99–114.
  • [24] Chen C, Hua Z, Zhang R, et al. Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed Signal Process 2020;57 101819.
  • [25] Jin Y, Qin C, Huang Y, et al. Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks. Knowl-Based Syst 2020;193 105460.
  • [26] Wei X, Li J, Zhang C, et al. Atrial fibrillation detection by the combination of recurrence complex network and convolution neural network. J Probab Stats 2019;2019:1–9.
  • [27] Yong X, Naren WL, Wang KQ, et al. Detecting atrial fibrillation by deep convolutional neural networks. Comput Biol Med 2018;93:84–92.
  • [28] Bumgarner JM, Lambert CT, Hussein AA, et al. Smartwatch algorithm for automated detection of atrial fibrillation. J Am Coll Cardiol 2018;71(21):2381–8.
  • [29] Sanna T, Ziegler PD, Crea F. Detection and management of atrial fibrillation after cryptogenic stroke or embolic stroke of undetermined source. Clin Cardiol 2018;41(3):426–32.
  • [30] Rubin J, Parvaneh S, Rahman A, et al. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. J Electrocardiol 2018;51(6):18–21.
  • [31] Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, physioToolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 2000;101:215–20.
  • [32] Xie S, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks. Comput Vis Pattern Recognit 2016.
  • [33] Christian S, Vincent V, Sergey I, et al. Rethinking the inception architecture for computer vision. Comput Vis Pattern Recognition 2016.
  • [34] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735–80.
  • [35] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations; 2014.
  • [36] Xiao T, Xu Y, Yang K, et al. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. Comput Vis Pattern Recognit 2015.
  • [37] Jing L, Kan J, Dalin Z, et al. Attention mechanism-based CNN for facial expression recognition. Neurocomputing 2020;411:340–50.
  • [38] Newell A, Yang K, Deng J. Stacked Hourglass networks for human pose estimation. In: European Conference on Computer Vision.
  • [39] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res 2010;9:249–56.
  • [40] Kingma DP, Adam Ba J. A method for stochastic optimization. Comput Sci 2014.
  • [41] Escalona-Morn MA, Soriano MC, Fischer I, Mirasso CR. Electrocardiogram classification using reservoir computing with logistic regression. IEEE J Biomed Heal Inform 2015;19 (3):892–8.
  • [42] Aschbacher K, Yilmaz D, Kerem Y, et al. Atrial fibrillation detection from raw photoplethysmography waveforms: A deep learning application. Heart Rhythm O2 2020;1(1):3–9.
  • [43] Bashar SK, Han D, Hajeb-Mohammadalipour S, et al. Atrial fibrillation detection from wrist photoplethysmography signals using smartwatches. Entific Rep 2019;9(1):15054.
  • [44] Bonomi AG, Schipper F, Eerikinen LM, et al. Atrial fibrillation detection using a novel cardiac ambulatory monitor based on photo-plethysmography at the wrist. J Am Heart Assoc 2018;7(15).
  • [45] Rozen G, Vaid J, Hosseini SM, et al. Diagnostic accuracy of a novel mobile phone application for the detection and monitoring of atrial fibrillation. Am J Cardiol 2018;121 (10):1187–91.
  • [46] Xin Y, Zhao Y, Mu Y, et al. Paroxysmal atrial fibrillation recognition based on multi-scale Rnyi entropy of ECG. Technol Health Care 2017;16(1):121.
  • [47] Wang JB. A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network. Future Gener Comput Syst 2019;102:670–9.
  • [48] Minh TN, Binh VN, Kiseon K. Deep Feature Learning for Sudden Cardiac Arrest Detection in Automated External Defibrillators. Sci Rer-UK 2018;Preprint doi10.1038/s41598-018-33424-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b41e9dbb-5fe9-4ad6-a96e-c8c16f034414
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.