PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigation on the multi-optimization of reinforcing the side members of the vehicle structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to investigate the improvement in the strength of a top-hat profile hollow-section beam used in a vehicle structure by attaching different shapes of internal reinforcements. The base structure of the beam was first considered as a hat-shape structure which was jointed to a flat plate using spot-welds. Three types of sheet metal reinforcements were formed and attached inside the beam’s structure. Then, they were tested experimentally under low-velocity lateral impact. Also, a numerical simulation is being developed using LS-DYNA explicit code and validated using experimental data. Valid numerical configuration is used to conduct an optimization study on cross-sectional shape of the internal reinforcing component. Optimizations are carried out using single- and multi-objective methods based on Genetic Algorithm approach and the suggested optimum solutions are compared with experimental results. Moreover, to discuss the feasibility of applied reinforcements on side section of a vehicle’s body-in-white, a realistic side-pole crash test is simulated using a validated vehicle model and performance of improved chassis is compared with basic model and results are presented, discussed and commented upon.
Rocznik
Strony
art. no. e25, 2022
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal Highway, Tehran, Iran
autor
  • Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal Highway, Tehran, Iran
  • Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal Highway, Tehran, Iran
  • School of Mechanical and Aerospace Engineering, Kingston University, London, UK
Bibliografia
  • 1. Pillai B, Rao CL, Kulkarni N, Pattanaik D. Study of automotive side sill/rocker by using carbon fibre reinforced polymer tubes. Int J Crashworthiness. 2018;23(6):660–679.
  • 2. McIvor IK, Anderson WJ, Bijak-Zochowski M. An experimental study of the large deformation of plastic hinges. Int J Solids Struct. 1977;13(1):53–61.
  • 3. Hofmeyer H. Cross-section crushing behaviour of hat-sections (part i: numerical modelling). Thin-Walled Struct. 2005;43(8):1143–54.
  • 4. Mamalis A, Manolakos D, Baldoukas AK, Viegelahn GL. Deformation characteristics of crashworthy thin-walled steel tubes subjected to bending. Proc Inst Mech Eng Part C-J Mech Eng Sci. 1989;203:411–7.
  • 5. Maduliat S, Ngo T, Tran JP. Energy absorption of steel hollow tubes under bending. Struct Build. 2015;168(12):930–42.
  • 6. Dlugosch M, Fritsch J, Lukaszewicz D, Hiermaier S. Experimental investigation and evaluation of numerical modeling approaches for hybrid-FRP-steel sections under impact loading for the application in automotive crash-structures. Compos Struct. 2017. https://doi.org/10.1016/j.compstruct.2017.04.077.
  • 7. Vesenjak M, Duarte I, Baumeister J, Göhler H, Krstulović-Opara L, Ren Z. Bending performance evaluation of aluminium alloy tubes filled with different cellular metal cores. Compos Struct. 2020;234:111748.
  • 8. Zhang Y, Yan L, Zhang W, Su P, Han B, Guo S. Metallic tube-reinforced aluminum honeycombs: compressive and bending performances. Compos B Eng. 2019;171:192–203.
  • 9. Baykasoğlu A, Baykasoğlu C, Cetin E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes. Thin-Walled Struct. 2020;149:106630.
  • 10. Alghamdi AAA. Collapsible impact energy absorbers: an over-view. Thin-Walled Struct. 2001;39(2):189–213.
  • 11. Chen G. Optimized design solutions for roof strength using advanced high strength steels. SAE Int J Mater Manuf. 2010;3:90–8.
  • 12. Pan C-L, Yu W-W. Bending strength of hybrid cold-formed steel beams. Thin-Walled Struct. 2002;40(5):399–414.
  • 13. Fyllingen Ø, Hopperstad OS, Langseth M. Simulations of a top-hat section subjected to axial crushing taking into account material and geometry variations. Int J Solids Struct. 2008;45(24):6205–19.
  • 14. Zhang H, Sun G, Xiao Z, Li G, Li Q. Bending characteristics of top-hat structures through tailor rolled blank (TRB) process. Thin-Walled Struct. 2018;123:420–40.
  • 15. Vignjevic R, Liang C, Hughes K, Brown JC, De Vuyst T, Djordjevic N, Campbell J. A numerical study on the influence of internal corrugated reinforcements on the biaxial bending collapse of thin-walled beams. Thin-Walled Struct. 2019;144:106277.
  • 16. Li Y, You Z. Open-section origami beams for energy absorption. Int J Mech Sci. 2019;157–158:741–57.
  • 17. Du Z, Duan L, Cheng A, Xu Z, Zhang G. Theoretical prediction and crashworthiness optimization of thin-walled structures with single-box multi-cell section under three-point bending loading. Int J Mech Sci. 2019;157–158:703–14.
  • 18. Duan L, Du Z, Jiang H, Xu W, Li Z. Theoretical prediction and crashworthiness optimization of top-hat thin-walled structures under transverse loading. Thin-Walled Struct. 2019;144:106261.
  • 19. Zhang X, Zhang H, Wang Z. Bending collapse of square tubes with variable thickness. Int J Mech Sci. 2016;106:107–16.
  • 20. Zhang X, Zhang H, Ren W. Bending collapse of folded tubes. Int J Mech Sci. 2016;117:67–78.
  • 21. Huang Z, Zhang X, Zhang H. Energy absorption and optimization design of multi-cell tubes subjected to lateral indentation. Thin-Walled Struct. 2018;131:179–91.
  • 22. Huang Z, Zhang X. Three-point bending of thin-walled rectangular section tubes with indentation mode. Thin-Walled Struct. 2019;137:231–50.
  • 23. Zahedan N, Ahmadi H, Atashafrooz S, Baghaeian M. Experimental and numerical investigation on bending strength of the vehicle bumper beam with internal stiffeners. Int J Crashworthiness. 2021;26(6):661–673.
  • 24. Shaw J, Kuriyama Y, Lambriks M. Achieving a lightweight and steel-Intensive body structure for alternative powertrains, SAE Technical Paper 2011-01-0425;2011. https:// doi. org/ 10. 4271/2011-01-0425.
  • 25. Li W, Gu Y-Z, Han L-H, Zhao X-L, Wang R, Nassirnia M, Heidarpour A. Behaviour of ultra-high strength steel hollow tubes subjected to low velocity lateral impact: experiment and finite element analysis. Thin-Walled Struct. 2019;134:524–36.
  • 26. Zhai H, Yao J, Zou J, Liu X, Wang Y. Deformation of small diameter aluminum alloy (AA6063T5) circular tubes subjected to lateral low-velocity impact. Thin-Walled Struct. 2020;154:106808.
  • 27. Wu Q, Zhi X, Li Q, Guo M. Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact. Int J Impact Eng. 2019;127:135–53.
  • 28. Gui C, Bai J, Zuo W. Simplified crashworthiness method of automotive frame for conceptual design. Thin-Walled Struct. 2018;131:324–35.
  • 29. Zahedan N, Ahmadi H, Liaghat G. Energy absorption study of a new reinforced top-hat section beam under flexural loading. Int J Crashworthiness. 2020. https://doi.org/10.1080/13588265.2020.1844434.
  • 30. Qi C, Sun Y, Hu H-T, Wang D-Z, Cao G-J, Yang S. On design of hybrid material double-hat thin-walled beams under lateral impact. Int J Mech Sci. 2016;118:21–35.
  • 31. Qi C, Sun Y, Yang S. A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact. Thin-Walled Struct. 2018;129:327–41.
  • 32. ASTM E8, E8M-16a. Standard test methods for tension testing of metallic materials. West Conshohocken, PA: ASTM International; 2016.
  • 33. T. Malmberg, Aspects of similitude theory in solid mechanics, part 1: deformation behavior, Karlsruhe: FZKA, 1995.
  • 34. Khalkhali A, Miandoabchi E. Experimental investigation into the bending energy absorption of hybrid aluminum/high strength and mild steel thin-walled sections joined by clinching. Proc Inst Mech Eng Part E J Process Mech Eng. 2021;235(2):452–62.
  • 35. Livermore Software Technology Corporation (LSTC) (2012) LS-DYNA Keyword User’s Manual, Version 971 R6.1.0, Vol. 1 and 2.
  • 36. Hallquist JO. LS-DYNA keyword users’ manual, material models, vol. 2. Livermore Software Technology Corporation; 2012.
  • 37. G. R. a. P. S. S. Cowper, Strain-hardening and strain-rate effects in the impact loading of cantilever beams, No. TR-C11–28. Brown Univ Providence Ri, 1957.
  • 38. Marais S, Tait R, Cloete T, Nurick G. Material testing at high strain rate using the split Hopkinson pressure bar. Latin Am J Solids Struct. 2004;1(3):219–339.
  • 39. Curve Fitting Toolbox : for Use with MATLAB® : User's Guide, Natick, MA: MathWorks, 2001.
  • 40 Almeida JHS, Bittrich L, Nomura T, Spickenheuer A. Cross-section optimization of topologically-optimized variable-axial aniso-tropic composite structures. Composite Struct. 2019;225:111150.
  • 41 Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.
  • 42. Wang R-C, Liang T-F. Application of fuzzy multi-objective linear programming to aggregate production planning. Comput Ind Eng. 2004;46(1):17–41.
  • 43. Roszkowska E. Multi-criteria decision making models by applying the TOPSIS method to crisp and interval data. Mult Criteria Decis Mak/Univ Econ Katowice. 2011;6:200–30.
  • 44. Ross M, Patel D, Wenzel Th. Vehicle Design and the Physics of Traffic Safety. Physics Today. 2005; 59(1):49–54. https://doi.org/10.1063/1.2180177.
  • 45. Marzougui D, Zink M, Zaouk A, Kan C, Bedewi N. Development and validation of a vehicle suspension finite element model for use in crash simulations. Int J Crashworthiness. 2004; 9(6):565–576. https://doi.org/10.1533/ijcr.2004.0311.
  • 46. Pintar FA, Maiman DJ, Yoganandan N. Injury patterns in side pole crashes. Annu Proc Assoc Adv Autom Med. 2007;51:419.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b41b8f77-d221-4ff0-92e0-8c49e74a154f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.