PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inuence of Inherent Material Damping on the Dynamic Buckling of Composite Columns with Open Cross-Sections

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the analysis of the damping behaviour of thin–walled composite columns with open stiffened cross–sections subjected to in–plane pulse loading is described. The pulse loading of a rectangular shape is concerned. The discussed problem of the dynamic interactive buckling is solved by the analytical–numerical method (ANM) using the Koiter’s perturbations method. A critical value of the dynamic load factors is determined according to the Budiansky–Hutchinson’s criterion for different value of the viscous damping ratio. The detailed calculations confirm that small damping does not affect the dynamic buckling of the thin–walled composite columns under the impact in–plane loading.
Rocznik
Strony
59--69
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Department of Strength of Materials Łódź University of Technology Stefanowskiego 1/15 90-924 Łódź, Poland
autor
  • Department of Applied Mechanics Lublin University of Technology Nadbystrzycka 36 20-618 Lublin, Poland
Bibliografia
  • [1] Walker, S. J. I., Aglietti, G. S. and Cunningham, P.: A study of joint damping in metal plates, Acta Astronautica, 65, 184–91, 2009.
  • [2] Chandra, R., Singh, S. P. and Gupta, K.: Damping studies in fiber–reinforced composites – review, Composite Structures, 46, 41–51, 1999.
  • [3] Mead, D. J.: The measurement of the loss factors of beams and plates with constrained and unconstrained damping layers: A critical assessment, J. Sound Vibration, 300, 744–62, 2007.
  • [4] Rao, M. D., Echempati, R. and Nadella, S.: Dynamic analysis and damping of composite structures embedded with viscoelastic layers, Composites Part B, 28B, 547–54, 1997.
  • [5] Kaliske, M. and Rothert, H.: Damping characterization of unidirectional fibre reinforced polymer composites, Composites Engrg, 5(5), 551–67, 1995.
  • [6] Koutsawa, Y., Azoti, W. L., Belouettar, S., Martin, R. and Barkanov, E.: Loss behavior of viscoelastic sandwich structures: A statistical–continuum multi–scale approach, Composite Structures, 94, 1391–7, 2012.
  • [7] Berthelot, J. M. and Sefrani, Y.: Damping analysis of unidirectional glass and Kevlar fibre composites, Composite Science & Technology, 64(9), 1261–78, 2004.
  • [8] Berthelot, J. M., Assarar, M., Sefrani, Y. and Mahi, A. E.: Damping analysis of composite materials and structures, Composite Structures, 85(3), 189–204, 2008.
  • [9] Berthelot, J. M.: Damping analysis of laminated beams and plates using the Ritz method, Composite Structures, 74(2), 186–201, 2006.
  • [10] Mahi, A. E., Assarar, M., Sefrani, Y. and Berthelot, J. M.: Damping analysis of orthotropic composite materials and laminates, Composites Part B: Engineering, 39(7–8), 1069–76, 2008.
  • [11] Chortis, D. I., Chrysochoidis, N. A., Varelis, D. S. and Saravanos, D. A.: A damping mechanics model and a beam finite element for the free–vibration of laminated composite strips under in–plane loading, J. Sound Vibration, 330, 5660–77, 2011.
  • [12] Hadi, A. S. and Ashton, J. N.: Measurement and theoretical modelling of the damping properties of a uni–directional glass/epoxy composite, Composite Structures, 34(4), 381–5, 1996.
  • [13] Mandal, N. K., Rahman, R. A. and Leong, M. S.: Experimental study on loss factor for corrugated plates by bandwidth method, Ocean Engrg, 31, 1313–23, 2004.
  • [14] Matter, M., Gmur, T., Cugnoni, J. and Schorderet, A.: Numerical–experimental identification of the elastic and damping properties in composite plates, Composite Structures, 90, 180–87, 2009.
  • [15] Ramkumar, K., Ganesan, N. and Kannan, R.: Global and local behavior based composite damping studies on thin–walled box structure, European Journal of Mechanics - A/Solids, 29(2), 253–65, 2010.
  • [16] Suresh, R. and Malhotra, S. K.: Vibration and damping analysis of thin–walled box beams, J. Sound Vibration, 215(2), 201–10, 1998.
  • [17] Osiński, Z. (ed.): Damping of vibrations, A.A. Balkema, Brookfield, Rotterdam, 1998.
  • [18] ANSYS 11 HTML Online Documentation SAS IP, Inc., 2007.
  • [19] Kolakowski, Z.: Static and dynamic interactive buckling of composite columns, JTAM, 47(1), 177–92, 2009.
  • [20] Kowal-Michalska, K. (Ed.): Dynamic Stability of Composite Plate Structures, (in Polish), WNT, Warszawa, 2007.
  • [21] Królak, M. and Mania, R. J., (eds.): Statics, dynamics and stability of structures. Vol. 1. Stability of thin-walled plate structures, Technical University of Łódź, Series of monographs, 2011.
  • [22] Teter, A. and Kolakowski, Z.: Buckling of thin–walled composite structures with intermediate stiffeners, Composite Structures, 60, 421–28, 2005.
  • [23] Schokker, A., Sridharan, S. and Kasagi, A.: Dynamic buckling of composite shells, Comput. Struct., 59(1), 43–55, 1996.
  • [24] Sridharan, S. and Benito, R.: Columns: Static and Dynamic Interactive Buckling, J. Engineering Mechanics, ASCE, 110(1), 49–65, 1984.
  • [25] Teter, A.: Dynamic critical load based on different stability criteria for coupled buckling of columns with stiffened open cross–sections, Thin-Walled Structures, 49, 589–95, 2011.
  • [26] Teter, A.: Dynamic, multimode buckling of thin–walled columns subjected to in–plane pulse loading, Int. J. Non-Linear Mechanics, 45, 207–18, 2010.
  • [27] Byskov, E.: Elastic buckling problem with infinitely many local modes, Mechanics of Structures and Machines, 15(4), 413–35, 1988.
  • [28] Kołakowski, Z. and Kowal-Michalska, K., (Eds.): Selected problems of instabilities in composite structures, A Series of Monographs, Technical University of Łódź, 1999.
  • [29] Kołakowski, Z. and Kubiak, T.: Load–carrying capacity of thin–walled composite structures, Composite Structures, 67(4), 417–26, 2005.
  • [30] Kotełko, M., Kowal-Michalska, K., Kubiak, T., Kołakowski, Z. and Grądzki, R.: Estimation of load–carrying capacity of multi–layered plated, Thin-Walled Structures, 46(7–9), 1003–10, 2008.
  • [31] Kubiak, T.: Estimation of dynamic buckling for composite columns with open cross–section, Computers & Structures, 89(21–22), 2001–9, 2011.
  • [32] Kołakowski, Z. and Kubiak, T.: Interactive dynamic buckling of orthotropic thin–walled channels subjected to in–plane pulse loading, Composite Structures, 81(2), 222–32, 2007.
  • [33] Kubiak, T.: Criteria of dynamic buckling estimation of thin–walled structures, Thin-Walled Structures, 45(10–11), 888–92, 2007.
  • [34] Debski, H., Kubiak, T. and Teter, A.: Buckling and postbuckling behaviour of thin–walled composite channel section, Composite Structures, 100, 195–204, 2013.
  • [35] Teter, A. and Ko lakowski, Z.: Natural frequencies of thin–walled structures with central intermediate stiffeners or/and variable thickness, Thin-Walled Structures, 41, 291–316, 2003.
  • [36] Hairer, E., N_rsett, S. and Wanner, G.: Solving ordinary differential equations, New York, Springer Verlag, 1993.
  • [37] Muravskii, G. B.: On frequency independent damping, J. Sound Vibration, 274(3–5), 653–68, 2004.
  • [38] Pritz, T.: Frequency power law of material damping, Appl. Acoust, 65(10), 1027–36, 2004.
  • [39] Pritz, T.: Frequency dependences of complex moduli and complex Poisson’s ratio of real solid materials, J. Sound Vibration, 214(1), 83–104, 1998.
  • [40] Maher, A., Ramadan, F. and Ferra, M.: Modeling of vibration damping in composite structures, Composite Structures, 46(2), 163–70, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4198ea9-a8e0-4a8d-884d-5e3ebe5b862c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.