PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Disk cutter wear prediction of TBM considering sliding and rolling friction

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Considering the serious wear of disk cutters in tunnel project and the low prediction accuracy of existing methods, a new method for wear prediction of disk cutters from an energy perspective was proposed. Based on contact mechanics, the rock breaking process of cutters was analyzed, and the combined action of sliding and rolling friction was considered. Furthermore, the wear prediction model of disk cutters was established, which realized the predicted wear of disk cutters under different geological conditions throughout the construction line. In addition, considering the influence of penetration on the wear prediction model, the predicted wear values under different penetrations were obtained, and their average values were taken as the predicted wear values of disk cutters considering penetration. Finally, the predicted wear values were compared with the actual wear value of disk cutters. The results showed that the average relative error between the predicted wear value of disk cutters considering sliding and rolling friction and the actual wear data was 12.8%. The average relative error between the predicted value of wear considering only sliding friction and the actual value of disk cutters is 18.3%. The average relative error between the predicted value of disk cutter wear considering penetration and the actual wear data was 12.2%, which proved the feasibility and accuracy of the prediction model. Meanwhile, it is more accurate than the model only considering sliding friction. The research results provided a scientific theoretical basis for the design of a tool change scheme in tunnel construction.
Wydawca
Rocznik
Strony
42--56
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang City, Hebei Province 050043, China
autor
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang City, Hebei Province 050043, China
autor
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang City, Hebei Province 050043, China
autor
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang City, Hebei Province 050043, China
autor
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang City, Hebei Province 050043, China
autor
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang City, Hebei Province 050043, China
Bibliografia
  • [1] Parriaux A, Tacher L, Joliquin P. The hidden side of cities – towards three-dimensional land planning. Energy Build. 2004;36(4): 335–41. doi:10.1016/j.enbuild.2004.01.026.
  • [2] Gertsch R, Gertsch L, Rostami J. Disc cutting tests in Colorado red granite: implications for TBM performance prediction. Int J Rock Mech Min Sci. 2007;44(2): 238–46. doi:10. 1016/j. ijrmms. 2006. 07. 007.
  • [3] Sun W, Zhang X, Zhao KS. Multi-stage force prediction model of single disc cutter based on the dense nuclear theory. Mech Des Manuf. 2015;292(06): 9–12. doi:10. 19356/j. cnki. 1001-3997. 2015. 06. 003.
  • [4] Xia Y-M, Ouyang T, Zhang X-M, Luo D-Z. Mechanical model of breaking rock and force characteristic of disc cutter. J Cent South Univ. 2012;19(7): 1846–52. doi:10.1007/s11771-012-1218-8.
  • [5] Zhang H. Analysis of damages of TBM disc cutters and countermeasures. Mod Tunnel Technol. 2010;47(06): 40–45+50. doi:10.13807/j.cnki.mtt.2010.06.008.
  • [6] Yang Y-D, Chen K, Li F-Y, Zhou J-J. Wear prediction model of disc cutter. J China Coal Soc. 2015;40(6): 1290–6. doi:10.13225/j.cnki.jccs.2014.3037.
  • [7] She L, Zhang S-R, He S-W, Chao W, Lei L, Yong J, et al. Prediction model for TBM disc cutter wear based on dense core theory. Chin J Geotech Eng. 2022;44(5): 970–8. doi:10.11779/CJGE202205021.
  • [8] Rostami J. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure. Dept. Of Mining Engineering, Colorado School of Mines; 1997.
  • [9] Zhang G, Tan Q, Lao T. Analysis of rock breaking mechanics model for TBM disc cutter. J Cent South Univ. 2020;51(10): 2792–9. doi:10.11817/j.issn.16727207.2020.10.011.
  • [10] Liu Q, Liu J, Pan Y, Zhang X, Peng X, Gong Q, et al. A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China. Rock Mech Rock Eng. 2017;50(5): 1303–20. doi:10.1007/s00603-017-1176-4.
  • [11] Rong X, Lu H, Wang M, Wen Z, Rong X. Cutter wear evaluation from operational parameters in EPB tunneling of Chengdu metro. Tunnelling Underground Space Technol. 2019;93: 103043.1–.8. doi:10.1016/j.tust.2019.103043.
  • [12] Li X, Su X. A new method for forecasting shield’s disc-cutters wearing based on Elman neural network. J Liaoning Tech Univ. 2010;29(6): 1121–4. doi:10.3969/j.issn.1008-0562.2010.06.030.
  • [13] Elbaz K, Shen SL, Zhou A, Yin ZY, Lyu HM. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH- type neural network. Engineering. 2021;7(2): 238–51. doi:10.1016/j.eng.2020.02.016.
  • [14] Shen X, Chen X, Fu Y, Cao C, Yuan D, Li X, et al. Prediction and analysis of slurry shield TBM disc cutter wear and its application in cutter change time. Wear. 2022;498–9: 204314. doi:10.1016/j.wear.2022.204314.
  • [15] Song L. Based on the theory of energy dissipation TBM disc cutter rock breaking energy field analysis and application research. China: Tianjin University; 2016.
  • [16] Geng Q. Analytical research on the wear mechanism of TBM disc cutters based on an energy approach. Chin J Mech Eng. 2018;54(1): 36–43. doi:10.3901/JME.2018.01.036.
  • [17] Farrokh E. Cutter change time and cutter consumption for rock TBMs. Tunnelling Underground Space Technol. 2021;114: 104000. doi:10.1016/j.tust.2021.104000.
  • [18] Fleischer G. Energy Balancing of the Material Friction as a Basis for Calculating Dynamic Wear. Pt. 3. Schmierungstechnik. 1977;8(2): 49–55.
  • [19] Fu J, Xia Y, Zhang L, Lin L, Zhang X, Zhao S. Failure analysis on the fracture of disc cutter in EPB shield machine. Eng Fail Anal. 2020;108: 104341. doi:10.1016/j.engfailanal.2019.104341.
  • [20] Naeimipour A, Rostami J, Buyuksagis IS, Frough O. Estimation of rock strength using scratch test by a miniature disc cutter on rock cores or inside boreholes. Int J Rock Mech Min Sci. 2018;107: 9–18. doi:10.1016/j.ijrmms.2018.03.020.
  • [21] Exadaktylos G, Xiroudakis G, Stavropoulou M. Rolling disc model for rock cutting based on fracture mechanics. Int J Rock Mech Min Sci. 2018;107: 191–200. doi:10.1016/j.ijrmms.2018.04.056.
  • [22] FengHua L, ZongXi C, Yi Lan K. A theoretical model for estimating the wear of the disc cutter. Appl Mech Mater. 2011: 90-93:2232–6. doi:10.4028/www.scientific.net/AMM.90-93.2232.
  • [23] Zhao H, Shu B, Xia Y, Zheng W. Study of wear prediction for TBM cutter based on abrasive wear model. J Railw Sci Eng. 2014;11(04): 152–8. doi:10.19713/j.cnki.43-1423/u.2014.04.025.
  • [24] Lu J, An Q. Calculating method for the wear of metal-tometal dry sliding based on elastic–plastic contact theory. Proc Inst Mech Eng Part J: J Eng Tribol. 2018;232(10): 1215–29. doi:10.1177/1350650117743879.
  • [25] Hua X, Puoza JC, Zhang P. The influence of laser surface texture on the tribological properties of friction layer materials in ultrasound motors. Proc Inst Mech Eng Part J: J Eng Tribol. 2022;236(6): 1123–32. doi:10.1177/13506501211052763.
  • [26] Zhang Z, Aqeel M, Li C, Sun F. Theoretical prediction of wear of disc cutters in tunnel boring machine and its application. J Rock Mech Geotech Eng. 2019;11(1): 111– 20. doi:10.1016/j.jrmge.2018.05.006.
  • [27] Greenwood JA, Tabor D. The friction of hard sliders on lubricated rubber: the importance of deformation losses. Proc Phys Soc. 1958;71(6): 989–1001. doi:10.1088/0370-1328/71/6/312.
  • [28] Zhang Y, Si C, Zhang Y, Zhang D, Cui Y. Effect of wearresistant coatings on the comprehensive performance of finger seal. Proc Inst Mech Eng Part J: J Eng Tribol. 2019;233(4): 570–9. doi:10.1177/1350650118787912.
  • [29] Bonfanti G, Colturato M, Rossi R. Global existence for a highly nonlinear temperature-dependent system modeling nonlocal adhesive contact. Non- linear Anal Real World Appl. 2022;66: 103511. doi:10.1016/j.nonrwa.2022.103511.
  • [30] Zhang S, Wang D, Cheng P, Shao C. Experimental and numerical analysis of the wear mechanism in spring coil forming die and the effects of die geometry on wear. Proc Inst Mech Eng Part J: J Eng Tribol. 2022;236(11): 2087–94. doi:10.1177/13506501211070097.
  • [31] Guo J. The mechanism of producing rolling friction force and its calculation. Lubr Eng. 1988;1:19–24.
  • [32] Li L, Wang H-Y, Zhou A-G. Nonlinear elastic deformation of magnesium and cobalt by Preisach-Mayergoyz model. Trans Nonferrous Met Soc China. 2012;22(9): 2220–5. doi:10.1016/S1003-6326(11)61452-0.
  • [33] Telliskivi T. Simulation of wear in a rolling–sliding contact by a semi-Winkler model and the Archard’s wear law. Wear. 2004;256(7-8): 817–1. doi:10.1016/S0043- 1648(03)00524-6.
  • [34] Liu H, Qu C, Qin Q. Experimental investigation on skimming wear mechanism between TBM cutter ring and rock. Exp Mech. 2015;30(03): 289–98. doi:10.7520/1001-4888-14-16.
  • [35] Li J, Huang Y, Zhang X, Sun Y, Guo J. Disc cutter wear prediction based on the friction work principle. Trans Can Soc Mech Eng. 2021;45(3): 384–95. doi:10.1139/tcsme-2020-0153.
  • [36] Zhang ZH, Gong GF, Gao QF, Sun F. Fragmentation energy-saving theory of full face rock tunnel boring machine disc cutters. Chin J Mech Eng. 2017;30(4): 913–9. doi:10.1007/s10033-017-0159-4.
  • [37] Rostami J, Ozdemir L, Nilson B. Comparison between CSM and NTH hard rock TBM performance prediction models. In: Proceedings of Annual Technical Meeting of the Institute of Shaft Drilling Technology. Las Vegas; 1996. p. 1–10.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4182327-1cb3-4b15-b595-4b8f2f1ab5fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.