Identyfikatory
ISBN
10.55225/sti.399
Warianty tytułu
Języki publikacji
Abstrakty
Organic matter decomposition is one of the most important processes associated with flow of energy and recirculation of organic matter in natural environments. Using commercially sold tea bags of Lipton Sencha green tea (SGT) and Lipton Ceylon black tea (CBT) their decomposition was studied in mixed and coniferous forest. At both stations 25 bags of each tea were buried for a period of 3 months. After elapsed time, the bags were dug up, dried, and the mean weight loss of organic material for each tea type and ecosystem was calculated. In the mixed forest the average weight loss of tea bags was 46.8% for Sencha and 32.1% for Ceylon tea and respectively 44.6% and 30.6%, in the coniferous forest. Statistical analysis test (ANOVA) revealed a statistically significant difference (p < 0.05) in rate of decomposition between tea types, however the differences between the decomposition of the same type of tea on both type of forest were insignificant.
Czasopismo
Rocznik
Tom
Strony
8--16
Opis fizyczny
Bibliogr. 26 poz., fot., tab.
Twórcy
autor
- University of Applied Sciences in Tarnow, ul. Mickiewicza 8, 33-100 Tarnów, Poland
autor
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, ul. Gronostajowa 7, 30-387 Kraków, Poland
Bibliografia
- [1] Abramczyk K, Gałązka A. Różnorodność mikroorganizmów glebowych obszarów chronionych i o znaczących walorach przyrodniczych. Sylwan. 2017;161(6): 497–499.
- [2] Mocek A, Owczarzak W. Gleba jako naturalne środowisko przyrodnicze. Nauka Przyroda Technologia. 2010;4(6):1–8.
- [3] Brożek S. Gleby i siedliska leśne nizin i wyżyn Polski – ujęcie klasyczne i numeryczne. Roczniki Gleboznawcze. 2011;62(4):7–15.
- [4] Tomaszewski J. O procesach glebotwórczych. Roczniki Gleboznawcze. 1959;8(2)17–38.
- [5] Niewinna M. Wielkość opadu i tempo rozkładu ściółki w wybranych drzewostanach Bieszczadów. Roczniki Bieszczadzkie. 2010;18:59–73.
- [6] Bujoczek L. Dekompozycja obumarłych drzew w ekosystemach leśnych ze szczególnym uwzględnieniem świerka, buka i jodły. Sylwan. 2012;156(3):208–217.
- [7] Horodecki P, Jagodziński A. Ściółka leśna – życiodajny składnik lasów. Academia – Magazyn Polskiej Akademii Nauk. 2019;3–4(59–60):54–57.
- [8] Kowałko D, Halarewicz A, Kaszubkiewicz J, Jezierski P. Tempo dekompozycji opadu organicznego podczas przemian siedlisk łęgowych. Sylwan. 2017;161(7):565–572. https://doi.org/10.26202/sylwan.2016098.
- [9] Weiner J. Życie i ewolucja biosfery. Warszawa: PWN; 2005.
- [10] Didion M, Repo A, Liski J, Forsius M. Towards harmonizing leaf litter decomposition studies using standard tea bags a field study and model application. Forests. 2016;7(8):1–12. https://doi.org/10.3390/f7080167.
- [11] Saint-Laurent D, Arsenault-Boucher L. Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol. Geoderma. 2019;358. https://doi.org/10.1016/j.geoderma.2019.113976.
- [12] BULiGL O/Kraków. Elaborat Glebowo – Siedliskowy dla Nadleśnictwa Dąbrowa Tarnowska. Kraków; 2005.
- [13] BULiGL O/Kraków. Plan urządzenia lasu Nadleśnictwo Dąbrowa Tarnowska na okres gospodarczy od 1 stycznia 2016 r. do 31 grudnia 2025 r. Kraków; 2015.
- [14] Houben D, Faucon M-P, Mercadal A-M. Response of organic matter decomposition o no-tillage adoption evaluated www.stijournal.pl
- 16 Original article P. Żelazo, J. Fyda Science, Technology and Innovation, 2022, 15 (1–2), 8–16 by the teabag technique. Soil Systems. 2018;2(42):1–9. https://doi.org/10.3390/soilsystems2030042.
- [15] Keuskamp JA, Dingemansl BJJ, Lehtinen T, Sarneel JM, Hefting MM. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution. 2013;4:1070–1075. https:// doi.org/10.1111/2041-210X.12097.
- [16] Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 2008;44:322–331. https://doi.org/10.2307/1932179.
- [17] Berg B. Decomposition patterns for foliar litter: A theory for influencing factors. Soil Biology Biochemistry. 2014;78:222– 232. https://doi.org/10.1016/j.soilbio.2014.08.005.
- [18] Coûteaux MM, Bottner P, Berg B. Litter decomposition, climate and litter quality. Trends in Ecology & Evolution. 1995;10(2):63–66. https://doi.org/10.1016/S0169-5347(00)88978-8.
- [19] Hararuk O, Luo Y. Improvement of global litter turnover rate predictions using a Bayesian MCMC approach. Ecosphere. 2014;5(12):1–13. https://doi.org/10.1890/ES14-00092.1.
- [20] Miatto RC, Batalha MA. Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: Response to soil and taxonomy and effects on decomposition rates. Plant Ecology. 2016;217:1467–1479. https://doi.org/10.1007/s11258-016-0658-x.
- [21] Bell MC, Ritson JP, Verhoef A, Brazier RE, Templeton MR, Graham NJD, Freeman C, Clark JM. Sensitivity of peatland litter decomposition to changes in temperature and rainfall. Geoderma. 2018;331:29–37. https://doi.org/10.1016/j.geoderma.2018.06.002.
- [22] Tóth Z, Hornung E, Báldi A. Effects of set-aside management on certain elements of soil biota and early stage organic matter decomposition in a High Nature Value Area, Hungary. Nature Conservation. 2018;29:1–26. https:doi.org/10.3897/natureconservation.29.24856.
- [23] Laskowski R, Niklińska M, Maryański M. The dynamics of chemical elements in forest litter. Ecology. 1995;76(5):1393–1406. https://doi.org/10.2307/1938143.
- [24] Berg B, Laskowski R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Advances in Ecological Research. Amsterdam–London: Elsevier; 2006:421.
- [25] Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK. Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management. 2012;264:185–196. https://doi.org/10.1016/j.foreco.2011.10.009.
- [26] Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology. 2006;87(9):2288–2297.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4179ca5-066b-4ec3-884d-d5f71a60fedd