Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, energy band gaps and electrical conductivity based on aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique, with graphite and carbon as cathode and anode, respectively. Synthesis is done at 353 K from an aqueous solution of analytical grade selenium dioxide (SeO2), and aluminum chloride (AlCl2·7H2O). Junctions-based Al2Se3thin films from a controlled medium of pH 2.0 are deposited on fluorine-doped tin oxide (FTO) substrate using potential voltages varying from 1,000 mV to 1,400 mV and 3 minutes −15 minutes respectively. The films were characterized for optical properties and electrical conductivity using UV-vis and photoelectrochemical cells (PEC) spectroscopy. The PEC reveals a transition in the conduction of the films from p-type to n-type as the potential voltage varies. The energy band gap reduces from 3.2 eV to 2.9 eV with an increase in voltage and 3.3 eV to 2.7 eV with increase in time. These variations indicate successful fabrication of junction-based Al2Se3 thin films with noticeable transition in the conductivity type and energy band gap of the materials. Consequently, the fabricated Al2Se3can find useful applications in optoelectronic devices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
166--171
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria
autor
- Condensed Matter and Statistical Physics Research Unit, Department of Physics, School of Sciences, The Federal University of Technology, Akure, Nigeria
autor
- Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria
autor
- Condensed Matter and Statistical Physics Research Unit, Department of Physics, School of Sciences, The Federal University of Technology, Akure, Nigeria
autor
- Department of Physics, Edo University Iyamho, Auchi, Edo State, Nigeria
autor
- Basic Sciences Department, Physics/Electronics Unit, Babcock University, Ilisan-Remo, Ogun State, Nigeria
Bibliografia
- [1] Huang KC, Liu CL, Hung PK, Houng MP. Cyclic voltammetric study and nucleation of electrodeposited Cu(In,Al)Se2 thin films with sodium dodecyl sulfate additive. J Electrochem Soc. 2013; 160(4):D125–D131; https://doi.org/10.1149/2.029304jes
- [2] Adams JA, Bostwick A, Ohta T, Ohuchi FS, Olmstead MA. Heterointerface formation of aluminum selenide A B Fig. 7. PEC signal as a function of growth voltage for glass/FTO/Al2Se3 layers at varied (A) time and (B) voltage. FTO, fluorine-doped tin oxide; PEC, photoelectrochemical cells. with silicon: Electronic and atomic structure of Si(111): AlSe. Phys Rev B. 2005;71(19):1–8; https://doi.org/10.1103/PhysRevB.71.195308
- [3] Balitskii OA, Demchenko PY, Mijowska E, Cendrowski K. Synthesis and characterization of luminescent aluminium selenide nanocrystals. Mater Res Bull. 2013; 48(2):916–9; https://doi.org/10.1016/j.materresbull.2012.11.059
- [4] Beck G, Funk S. Correlation between optical appearance and orientation of aluminium. Surf Coat Technol. 2012; 206(8–9):2371–9; https://doi.org/10.1016/j.surfcoat.2011.10.034
- [5] Lincot D. Electrodeposition of semiconductors. Thin Solid Films. 2005; 487(1–2):40–8; https://doi.org/10.1016/j.tsf.2005.01.032
- [6] Wang Y, Zhong K, Zhang N, Kang Y. Numerical analysis of solar radiation effects on flow patterns in street canyons. Eng Appl Comput Fluid Mech. 2014; 8(2):252–62; https://doi.org/10.1080/19942060.2014.11015511
- [7] Asaduzzaman M, Bahar AN, Bhuiyan MMR, Habib MA. Impacts of temperature on the performance of CdTe based thin-film solar cell. IOP Conf Ser Mater Sci Eng. 2017; 225(1):012274; https://doi.org/10.1088/1757-899X/225/1/012274
- [8] Ikhioya IL, Ijabor BO, Whyte GM, Ezema FI. Synthesis and characterization of aluminium sulphide (Al2S3)thin films. Chem Methodol. 2019; 3(6):715–6; https://doi.org/10.33945/sami/chemm.2019.6.4
- [9] Shavel A, Gaponik N, Eychmu A. Efficient UVblue photoluminescing thiol-stabilized water-soluble alloyed ZnSe (S) nanocrystals. J Phys Chem B. 2004;108(19):5905–8.
- [10] Min HS. Characterization of N-Type and P-Type thin films. Chem Sci J. 2016; 7(2):4172; https://doi.org/10.4172/2150-3494.1000e113
- [11] Chaudhari JB, Deshpande NG, Gudage YG, Ghosh A, Huse VB, Sharma R. Studies on growth and characterization of ternary CdS 1-xSex alloy thin films deposited by chemical bath deposition technique. Appl Surf Sci. 2008; 254(21):6810–6; https://doi.org/10.1016/j.apsusc.2008.04.081
- [12] Chaudhari KB, Gosavi NM, Deshpande NG, Gosavi SR. Journal of science : Advanced materials and devices chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications. J Sci Adv Mater Devices. 2016; 1(4):476–1; https://doi.org/10.1016/j.jsamd.2016.11.001
- [13] Echendu OK, Dharmadasa IM. Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thinfilms. Energies. 2015;8(5):4416–35; https://doi.org/10.3390/en8054416
- [14] Raffaelle RP, Mantovani JG, Bailey SG, Hepp AF, Gordon EM, Haraway R. Electrodeposited CuInSe2 thin film junctions. NASA Conf Publ. 1998; 208413:47; https://doi.org/10.1557/PROC-495-383
- [15] Strauss AJ, The AJS, Appliquee DP. The physical properties of cadmium telluride. Revue de Physique Appliquee. 1977;12(2):167–84.
- [16] Mahalingam T, John VS, Rajendran S, Sebastian PJ. Electrochemical deposition of ZnTe thin films. Semicond Sci Technol. 2002; 17(5):465–70; https://doi.org/10.1088/0268-1242/17/5/310
- [17] Dharmadasa IM, Madugu ML, Olusola DI, Echendu OK, Fauzi F, Diso DG, et al. Electroplating of CdTe thin films from cadmium sulphate precursor and comparison of layers grown by 3-electrode and 2-electrode systems. Coatings. 2017; 7(2):17; https://doi.org/10.3390/coatings7020017
- [18] Diso DG, Fauzi F, Echendu OK, Olusola OI, Dharmadasa IM. Optimisation of CdTe electrodeposition voltage for development of CdS/CdTe solar cells. J Mater Sci Mater Electron. 2016;27(12):12464–72; https://doi.org/10.1007/s10854-016-4844-3
- [19] Samuel S, Akande A, Olusola OI, Adelaja Y. Materials Today : Proceedings Tunability of conductivity type and energy band gap of CdTe thin film in the electrodeposition technique. Mater Today Proc. 2020; https://doi.org/10.1016/j.matpr.2020.02.962
- [20] Echendu OK, Okeoma KB, Oriaku CI, Dharmadasa IM. Electrochemical deposition of CdTe semiconductor thin films for solar cell application using two-electrode and three-electrode configurations: A comparative study. Adv Mater Sci Eng. 2016;2016:10–14; https://doi.org/10.1155/2016/3581725
- [21] Slonopas A, Alijabbari N, Saltonstall C, Globus T, Norris P. Electrochimica acta chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics. Electrochim Acta. 2015;151:140–9; https://doi.org/10.1016/j.electacta.2014.11.021
- [22] Kim J, Kim HT, Park C. Synthesis and characterization of cadmium telluride nanocrystals for using hybrid solar cell. Int Conf Opt MEMS Nanophotonics. 2011:227–228; https://doi.org/10.1109/OMEMS.2011.6031101
- [23] Ojo AA, Dharmadasa IM. Electroplating of semiconductor materials for applications in large area electronics: A review. Coatings. 2018;8(8):262; https://doi.org/10.3390/coatings8080262
- [24] Milbrath BD, Peurrung AJ, Bliss M, Weber WJ. Radiation detector materials: An overview. J Mater Res. 2008; 23(10):2561–81; https://doi.org/10.1557/jmr.2008.0319
- [25] Olusola OI, Oluyamo SS, Ajayi OA. Materials science in semiconductor processing opto-electronic properties of electrodeposited ZnTe using zinc anode as counter electrode. Mater Sci Semicond Process. 2020:105494; https://doi.org/10.1016/j.mssp.2020.105494
- [26] Kumarasinghe KD, De Silva DS, Pathiratne KA, Salim HI, Abdul-Manaf NA, Dharmadasa IM. Electrodepositionand characterization of as-deposited and annealed CdTe thin films. Ceylon J Sci. 2016;45(2):53; https://doi.org/10.4038/cjs.v45i2.7388
- [27] Salim HI, Patel V, Abbas A, Walls JM, Dharmadasa IM. Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. J Mater Sci Mater Electron. 2015;26(5):3119–28; https://doi.org/10.1007/s10854-015-2805-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b411e125-30f3-4a24-9aec-40610dc51c8b