Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article proposes to use abrasive waterjet cutting (AWJ) for deflashing, deburring and similar finishing operations in casting. The basic requirements concerning the dimensional accuracy and surface texture of cast components are not met if visible surface flaws are detected. The experiments focused on the removal of external flash from elements made of EN-GJL-150 cast iron. The method employed for finishing was abrasive waterjet cutting. The tests were carried out using an APW 2010BB waterjet cutting machine. The form profiles before and after flash removal were determined with a Taylor Hobson PGI 1200 contact profiler. A Nikon AZ100 optical microscope was applied to observe and measure the changes in the flash height and width. The casting surface after finishing was smooth, without characteristic sharp, rough edges that occur in the cutting of objects with a considerable thickness. It should be emphasized that this method does not replace precise cutting operations. Yet, it can be successfully used to finish castings for which lower surface quality is required. An undoubted advantage of waterjet cutting is no effect of high temperature as is the case with plasma, laser or conventional cutting. This process is also easy to automate; one tool is needed to perform different finishing operations in order to obtain the desired dimensions, both internal and external.
Czasopismo
Rocznik
Tom
Strony
94--98
Opis fizyczny
Bibliogr. 27 poz., fot., rys., tab.
Twórcy
autor
- Kielce University of Technology, Department of Metal Science and Manufacturing Processes, Kielce, Poland
autor
- Kielce University of Technology, Department of Metal Science and Manufacturing Processes, Kielce, Poland
Bibliografia
- [1] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2013). Investment casting technology applied to copper alloys. Archives of Foundry Engineering. 13(spec.3), 143-148.
- [2] Wróbel, T., Szajanr, J., Bartocha, D. & Stawarz, M. (2017). Primary structure and mechanical properties of AlSi2 alloy continuous ingots. Archives of Foundry Engineering. 17(2), 145-150.
- [3] Chmielewski, T., Golanski, D. & Hudycz, M. (2019). Surface and structural properties of titanium coating deposited onto AIN ceramics substrate by friction surfacing process, Przemysl Chemiczny. 98(2), 208-213.
- [4] Dziwoki, A., Dulska, A., Szajnar, J. & Król, M., (2019). The impact of selected geometry parameter of titanium spatial insert on the surface layer formation on grey cast iron. Archives of Foundry Engineering. 19(1), 58-62.
- [5] Jaromin, M., Dojka,, R., Jezierski, J.R. & Dojka, M. (2019). Influence of type and shape of the chill on solidification process of steel casting. Archives of Foundry Engineering. 19(1), 35-44.
- [6] Salacinski, T; Winiarski, M; Przesmycki, A; et al; (2018). Applying titanium coatings on ceramic surfaces by rotating brushes, Proceedings of 27th International Conference on Metallurgy and Materials (Metal 2018), pp: 1235-1240
- [7] Bańkowski, D. & Spadlo, S. (2017) Vibratory machining effect on the properties of the aluminum alloys surface. Archives of Foundry Engineering. 17(4), 19-24.
- [8] Bańkowski, D., Spadło, S. (2017). Vibratory tumbling of elements made of Hardox400 steel, Proceedings of 26th International Conference on Metallurgy and Materials METAL 2017, Pages: 725-730.
- [9] Bankowski, D., Spadlo, S (2018). Influence of ceramic media on the effects of tumbler treatment; Proceedings of 27th International Conference on Metallurgy and Materials Metal 2018, Pages:. 1062-1066.
- [10] Bankowski, D., Spadlo, S. (2016). Investigations of influence of vibration smoothing conditions of geometrical structure on machined surfaces. 4th International Conference Recent Trends In Structural Materials. Comat 2016; Volume: 179 Article Number: UNSP 012002 Published: 2017. DOI.org/10.1088/1757-899X/179/1/012002.
- [11] Bańkowski, D., Spadło, S. (2015). Influence of the smoothing conditions in vibro-abrasive finishing and deburring process for geometric structure of the surface machine parts made of aluminum alloys EN AW2017, Proceedings of 24th International Conference on Metallurgy and Materials, METAL 2015, pp. 1062-1068.
- [12] Liszka, K., Klimkiewicz, K. & Malinowski, P. (2019). Polish foundry engineer with regard to changes carried by the industry 4.0. Archives of Foundry Engineering. 19(1), 103-108.
- [13] Persson, P-E., Ignaszak, Z., Fransson, H., Kropotkin, V., Andersson, R. & Kump, A. (2019) Increasing precision and yield in casting production by simulation of the solidification process based on realistic material data evaluated from thermal analysis (Using the ATAS MetStar System). Archives of Foundry Engineering. 19(1), 117-126.
- [14] Nowakowski, L., Skrzyniarz, M., & Miko, E. (2017). The analysis of relative oscillation during face. Eng. Mech. 2017a, 730-733.
- [15] Nowakowski, L., Skrzyniarz, M., & Miko, E. (2017). The assessment of the impact of the installation of cutting plates in the body of the cutter on the size of generated vibrations and the geometrical structure of the surface. Eng. Mech. 2017b, 734-737.
- [16] Kovacevic, R., Mohan, R. & Beardsley, H. (1996). Monitoring of thermal energy distribution in abrasive waterjet cutting using infrared thermography. ASME, Journal of Manufacturing Science and Engineering. 118, 555-563. Published 1996.
- [17] Swiercz, R., Oniszczuk-Swiercz, D. & Dabrowski, L. (2018). Electrical discharge machining of difficult to cut materials, Archive of Mechanical Engineering. 65(4), 461-476. DOI: 10.24425/ame.2018.125437.
- [18] Jedrzejczyk, D., Hajduga, M (2013). The influence of the kind of surfrace treatment on the wear of machines elements applied in the textile industry. Metal 2013: 22nd International Conference on Metallurgy and Materials (pp: 880-885).
- [19] Krajcarz, D., (2014) Comparison Metal Water Jet Cutting with Laser and Plasma Cutting, Procedia Engineering, 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, vol. 69, (pp. 838-843).
- [20] Sutowska, M. (2011). Indicators of the quality of the material cutting process with a water-abrasive jet. PAK. 57, 535-537. (in Polish).
- [21] Borkowski, J., Borkowski, P. (2008). High pressure hydrojetting technologies. Koszalin: Wydawnictwo Uczelniane Politechniki Koszalińskiej. ISBN 978-ISSN 0239-7129. (in Pilosh).
- [22] Wantuch, E. (2000). Technological indicators and costs of machining steel with high-pressure water-abrasive jet. Warszawa: Szkoła naukowa obróbek erozyjnych, pp. 83-95. (in Polish).
- [23] Hlavac, L.M., Krajcarz, D., Hlavacova, I.M. & Spadlo, S. (2017). Precision comparison of analytical and statistical regression models for AWJ cutting. Precision Engineering Journal Of The International Societies For Precision Engineering And Nanotechnology. 50,148-159, DOI: 10.1016/j.precisioneng.2017.05.002.
- [24] Janecki, D., Stępień, K. & Adamczak, S. (2010). Problems of measurement of barrel and saddle shaped elements using the radial method. Measurement. 43(5), 659-663.
- [25] Krajcarz, D., Bankowski, D. & Mlynarczyk, P. (2017). The effect of traverse speed on kerf width in AWJ cutting of ceramic tiles, 12th International Scientific Conference of Young Scientists on Sustainable. Modern and Safe Transport. 192, 469-473, DOI: 10.1016/j.proeng. 2017.06.081.
- [26] Hlaváč, L.M., Hlaváčová, I.M., Geryk, V. & Plančár, Š. (2015). Investigation of the taper of kerfs cut in steels by AWJ. International Journal of Advanced Manufacturing Technology. 77(9-12), 1811-1818. DOI:10.1007/s00170-014-6578-9).
- [27] Hlaváč, L.M., Hlaváčová, I.M., Arleo, F., Viganò, F., Annoni, M.P.G. & Geryk, V. (2018). Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precision Engineering. 53, 194-202. DOI: 10.1016/j.precisioneng.2017.05.002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b410f8ed-0519-4767-9cf2-bc1f7521a4c2