PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and features of thermal behavior of polymer composites based on polylactic acid and carbon nanotubes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the thermal behavior of biodegradable polylactide (PLA) modified with multi-walled car bon nanotubes (MWCNTs), conducted to determine the influence of the nanofiller and the prehistory on the structural and phase transformations in the polymer matrix. Experimental samples with different MWCNT contents were analyzed using differential scanning calorimetry to determine the glass transition temperatures, melting and crystallization features, as well as light microscopy methods to study the morphology. The obtained data made it possible to trace the dynamics of thermal transitions in nanocomposites considering the thermal prehistory and to identify trends in the formation of the crystalline structure depending on the MWCNT concentration. The results of the study indicate a complex interaction between the nanofiller and the polymer matrix, which is of significant importance for the development of new functional materials based on PLA with improved heat-resistant and mechanical properties.
Rocznik
Strony
123--131
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Petro Mohyla Black Sea National University, 10, 68 Desantnykiv St., Mykolaiv, Ukraine, 54003
  • Petro Mohyla Black Sea National University, 10, 68 Desantnykiv St., Mykolaiv, Ukraine, 54003
Bibliografia
  • [1] Gobena S.T., Woldeyonnes A.D., A review of synthesis methods, and characterization techniques of polymer nanocomposites for diverse applications, Discov. Mater. 2024, 4, 52, DOI: 10.1007/s43939-024-00119-0.
  • [2] Ali Z., Yaqoob S., Yu J., et al., Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications, Composites Part C: Open Access. 2024, 13, 100434, DOI: 10.1016/j.jcomc.2024.100434.
  • [3] Lysenkov E.A., Klepko V.V., Analysis of percolation behavior of electrical conductivity of the systems based on polyethers and carbon nanotubes, Journal of Nano- and Electronic Physics. 2016, 8 (1), 01017, DOI: 10.21272/jnep.8(1).01017.
  • [4] Jin F.L., Hu R.R., Park S.J., Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review, Compos. B. Eng. 2019, 164, 287–296, DOI: 10.1016/j.compositesb.2018.10.078.
  • [5] Farah S., Anderson D.G., Langer R., Physical and mechanical properties of PLA, and their functions in wide spread applications - A comprehensive review, Advanced Drug Delivery Reviews. 2016, 107, 367–392, DOI: 10.1016/j.addr.2016.06.012.
  • [6] Gonçalves C., Gonçalves I.C., Magalhães F.D. et al., Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review, Polymers (Basel). 2017, 9 (7), 269, DOI: 10.3390/polym9070269.
  • [7] dos Santos Silva I.D., Schäfer H., Jaques N.G. et al., An investigation of PLA/Babassu cold crystallization kinetics, J. Therm. Anal. Calorim. 2020, 141, 1389-1397, DOI: 10.1007/s10973-019-09062-2 .
  • [8] Tarani E., Pušnik Črešnar K., Zemljič L.F. et al., Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers, Applied Sciences. 2021, 11 (7), 3004, DOI: 10.3390/app11073004.
  • [9] Lysenkov E.A., Lysenkova I.P., Influence of Nanodia monds on the Structure and Thermophysical Properties of Polyethylene Glycol-Based Systems, Functional Materials. 2020, 27 (4), 774-780, DOI: 10.15407/FM27.04.774.
  • [10] Lin Y., Li P., Liu W. et al., Application-driven high-ther mal-conductivity polymer nanocomposites, Acs Nano. 2024, 18 (5), 3851-3870, DOI: 10.1021/acsnano.3c08467.
  • [11] Jalali A., Huneault M.A., Elkoun S., Effect of thermal history on nucleation and crystallization of poly(lactic acid), J. Mater. Sci. 2016, 51, 7768-7779, DOI: 10.1007/s10853-016-0059-5.
  • [12] Nevalainen K., Auvinen S., Orell O. et al., Characterization of melt‐compounded and masterbatch‐diluted poly propylene composites filled with several fillers. Polymer Composites. 2013, 34(4), 554-569, DOI: 10.1002/pc.22454.
  • [13] Lysenkov E.A., Klepko V.V., Lysenkova I.P., Features of Microstructure and Percolation Behavior of Polypropylene Glycol, Filled by Multiwalled Carbon Nanotubes, J. Nano- Electron. Phys. 2017, 9 (5), 05021, DOI: 10.21272/jnep.9(5).05021.
  • [14] Södergård A., Stolt M., Properties of lactic acid based polymers and their correlation with composition, Prog. Polym. Sci. 2002, 27, 1123-1163, DOI: 10.1016/S0079 6700(02)00012-6.
  • [15] Gohn A.M., Seo J., Colby R.H. et al., Crystal nucleation in poly(ether ether ketone)/carbon nanotube nanocomposites at high and low supercooling of the melt, Polymer, 2020, 199, 122548, DOI: 10.1016/j.polymer.2020.122548.
  • [16] Lysenkov E.A., Gagolkina Z.O., Lobko E.V. et al., Structure-property relationships in polymer nanocomposites based on cross-linked polyurethanes and carbon nanotubes, Functional Materials. 2015, 22 (3), 342–349, DOI: 10.15407/fm22.03.342.
  • [17] Lysenkov E.A., Klepko V.V., Yakovlev Yu.V., Specifics of percolation behavior in the polyether-carbon nanotube systems doped with LiClO4, Surface Engineering and Applied Electrochemistry. 2016, 52 (2), 186–192, DOI: 10.3103/S1068375516020071.
  • [18] Yang S., Li S.-R., Zhou S.-Y. et al., Cold crystallization behavior of poly(lactic acid) induced by poly(ethylene glycol)-grafted graphene oxide: Crystallization kinetics and polymorphism, Composites Science and Technology. 2024, 258, 110871, DOI: 10.1016/j.comp scitech.2024.110871.
  • [19] Kang H., Kim D.S., A study on the crystallization and melting of PLA nanocomposites with cellulose nanocrystals by DSC, Polymer Composites. 2023, 44 (11), 7727-7736, DOI: 10.1002/pc.27658.
  • [20] Vasanthan N., Manne N.J., Krishnama A., Effect of Molecular Orientation on the Cold Crystallization of Amorphous-Crystallizable Polymers: The Case of Poly(trimethylene terephthalate), Industrial & Engineering Chemistry Research. 2013, 52 (50), 17920-17926, DOI: 10.1021/ie402860t.
  • [21] Khare K.S., Khare R., Effect of Carbon Nanotube Dispersion on Glass Transition in Cross-Linked Epoxy Carbon Nanotube Nanocomposites: Role of Interfacial Interactions, The Journal of Physical Chemistry B. 2013, 117 (24), 7444-7454, DOI:10.1021/jp401614p.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b40adf0f-61d3-4576-8f5c-561fd2cd4b72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.