PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of transitional phenomena in rail vehicle dynamics in relation to the reliability and operational state of the continuous welded rail track in terms of rail joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of experimental and numerical studies on reliability and monitoring issues of railway infrastructure in terms of safety and operation. The state of knowledge concerning methods of assessing track condition, in particular rail joints used in continuous welded rail track of railway lines is described. Experimental results of rail joints used in track transition zones and the results of numerical studies/tests of the rail vehicle-track model are outlined. It is demonstrated, basing on the analyses of the experimental results, that not only should the rail joints used in continuous welded rail track be diagnosed during their acceptance, but also during their operation. It is proven that the currently used methodology for testing welded rail joints applied during acceptance testing of contact track is not fully correct and leads to misinterpretation of the measurement results. Moreover, the results of numerical simulation tests presented in this paper confirm the possibility of diagnosing the condition of rail joints by any vehicle passing over such a track equipped with a suitable system.
Rocznik
Strony
art. no. 7
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • Railway Research Institute, 50 Chłopickiego str., 04-275 Warsaw, Poland
  • Railway Research Institute, 50 Chłopickiego str., 04-275 Warsaw, Poland
  • Railway Research Institute, 50 Chłopickiego str., 04-275 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego str., 02-106 Warsaw, Poland
Bibliografia
  • 1. Ackroyd P, Angelo S, Nejikovsky B, Stevens J. Remote ride quality monitoring of Acela train set performance, ASME/IEEE Joint Rail Conference, Washington, DC, USA 2002;171–178, https://doi.org/10.1109/RRCON.2002.1000109.
  • 2. Aniszewicz A, Mariusz Fabijański M. Measurements of railway welded rail joints with a laser device, Welding Technology Review, 2020; 92(6):37-43, https://doi.org/10.26628/wtr.v92i6.1118.
  • 3. Brant J, Liang B. Condition monitoring systems in the railway industry. In advances in asset management and condition monitoring. Smart Innovation, Systems and Technologies; Ball, A., Gelman, L., Rao, B., Eds.; Springer: Cham, Switzerland, 2020; 166:671-683, https://doi:10.1007/978-3-030-57745-2_56.
  • 4. Bruni S, Goodall R., Mei T. X., Tsunashima H. Control and monitoring for railway vehicle dynamics, Vehicle System Dynamics 2007; 45:743-779, https://doi.org/10.1080/00423110701426690.
  • 5. Cai , Wen Z, Jin S, Zhai W., Dynamic stress analysis of rail joint with height difference defect using finite element method, Engineering Failure Analysis 2007; 14:1488–1499, https://doi.org/10.1016/j.engfailanal.2007.01.007.
  • 6. Charles, G., Goodall, R., Dixon, R. Model-based condition monitoring at the wheel–rail interface, Vehicle System Dynamics, 2008; 46(1):415–430, https://doi.org/10.1080/00423110801979259.
  • 7. Chudzikiewicz A, Bogacz R, Kostrzewski M, Konowrocki R. Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes. Transport 2018; 33(2):555-566, https://doi: 10.3846/16484142.2017.1342101
  • 8. Chudzikiewicz A, Korzeb J. Simulation study of wheels wear in low-floor tram with independently rotating wheels. Archive of Applied Mechanics 2018; 88: 175–192, https://doi.org/10.1007/s00419-017-1301-6.
  • 9. EN 13848-1:2019 Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry.
  • 10. Heirich O, Lehner A, Robertson P, Strang T. Measurement and analysis of train motion and railway track characteristics with inertial sensors, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) 2011, https://doi.org/10.1109/ITSC.2011.6082908.
  • 11. Himebaugh AK, Plaut RH, Dillard DA. Finite element analysis of bonded insulated rail joints, International Journal of Adhesion and Adhesives 2008; 28:142–150, https://doi.org/10.1016/j.ijadhadh.2007.09.003.
  • 12. Instructions for measuring, testing and assessing the condition of tracks/Instrukcja o dokonywaniu pomiarów, badań i oceny stanu torów Id-14, Instrukcje PKP Polskie Linie Kolejowe S.A. (in Polish)
  • 13. Instructions for welding rails with termite/Instrukcja spawania szyn termitem Id-5, Instrukcje PKP Polskie Linie Kolejowe S.A. (in Polish).
  • 14. Judek S, Skibicki J. Visual method for detecting critical damage in railway contact strips, Measurement Science & Technology, 2018; 29(5):1-8, http://dx.doi.org/10.1088/1361-6501/aaa9af.
  • 15. Konowrocki R, Chojnacki A. Analysis of rail vehicles' operational reliability in the aspect of safety against derailment based on various methods of determining the assessment criterion. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22(1):73-85, http://dx.doi.org/10.17531/ein.2020.1.9.
  • 16. Konowrocki R, Kalinowski D, Szolc T, Marczewski A. Identification of safety hazards and operating conditions of the low-floor tram with independently rotating wheels with various drive control configurations, Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23(1):21-33, http://dx.doi.org/10.17531/ein.2021.1.3.
  • 17. Liu Y, Sun X, Hock J, Pang J. A YOLOv3-based deep learning application research for condition monitoring of rail thermite welded joints, IVSP '20: Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing, 2020; 33-38, https://doi.org/10.1145/3388818.3388827.
  • 18. Molodova M, Oregui M, Núñez A, Li Z, Dollevoet R. Health condition monitoring of insulated joints based on axle box acceleration measurements. Engineering Structures 2016; 123:225–235, https://doi.org/10.1016/j.engstruct.2016.05.018.
  • 19. Nielsen J, Berggren E, Lölgen T, Müller R, Stallaert B., Pesqueux L. Overview of methods for measurement of track irregularities important for ground-borne vibration, UIC Collaborative Project Report, Rivas, Nicaragua, SCP0-GA-2010-265754, 2013.
  • 20. Roberts C, Weston P, Ling CS, Goodman C. New methods for track monitoring. IEEE seminar on Railway Condition Monitoring, Ref. No. 2004/10513, 2004; 64-78. https://doi.org/10.1049/ic:20040167
  • 21. Salvador P, Naranjo V, Insa R, Teixeira P. Axlebox accelerations: Their acquisition and time-frequency characterisation for railway track monitoring purposes. Measurement 2016; 82:301–312 https://doi.org/10.1016/j.measurement.2016.01.012.
  • 22. Steenbergen MJMM, Esveld C. Rail weld geometry and assessment concepts. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006; 220: 257-271, https://doi.org/10.1243/09544097JRRT38.
  • 23. Steenbergen MJMM, Esveld C. Relation between the geometry of rail welds and the dynamic wheel–rail response: numerical simulations for measured welds. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006; 220:409-423, https://doi.org/10.1243/0954409JRRT87.
  • 24. Steenbergen MJMM. Modelling of wheels and rail discontinuities in dynamic wheel–rail contact analysis, Vehicle System Dynamics 2006; 44(10):763-787, https://doi.org/10.1080/00423110600648535.
  • 25. Steenbergen MJMM. Quantification of dynamic wheel–rail contact forces at short rail irregularities and application to measured rail welds, Journal of Sound and Vibration 2008; 312:606–629, https://doi.org/10.1016/j.jsv.2007.11.004.
  • 26. Tabaszewski M, Firlik B. Assessment of the track condition using the Gray Relational Analysis method, Eksploatacja i Niezawodność - Maintenance and Reliability 2018; 20(1):147-152, http://dx.doi.org/10.17531/ein.2018.1.19
  • 27. Tsunashima H, Naganuma Y, Kobayashi T. Track geometry estimation from car-body vibration. Vehicle System Dynamics 2014; 52(Sup1):207–219, https://doi.org/10.1080/00423114.2014.889836.
  • 28. Tsunashima H, Naganuma Y, Matsumoto A, Mizuma T, Mori H. Condition monitoring of railway track using in-service vehicle. In: Perpinya X, editor. Reliability and safety in railway. InTech, 2012; 333-356, ISBN978-953-51-0451-3, https://doi.org/10.5772/35205
  • 29. Tsunashima H. Condition monitoring of railway tracks from car-body vibration using a machine learning technique. Applied Sciences 2019; 9:2734, https://doi:10.3390/app9132734.
  • 30. Tzanakakis K. The railway track and its long term behaviour: A handbook for a railway track of high quality, Tom 2, Springer Tracts on Transportation and Traffic, Springer Science & Business Media, 2013; 414, ISBN 3642360513. https://doi.org/10.1007/978-3-642-36051-0
  • 31. Ward, C. P., Weston, P. F., Stewart, E. J. C., Li, H., Goodall, R. M., Roberts, C., Mei, T. X., Charles, G., Dixon, R. Condition Monitoring Opportunities Using Vehicle-Based Sensors, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2011; 225(2):202–218, https://doi.org/10.1177/09544097JRRT406.
  • 32. Weston PF, Ling CS, Goodman CJ, Roberts C, Li P, Goodall RM. Monitoring vertical track irregularity from in-service railway vehicles. IMechE Pt F: J Rail Rapid Transit. 2007; 221(1):75-88, https://doi.org/10.1243/0954409JRRT65.
  • 33. Weston PF, Ling CS, Goodman CJ, Roberts C, Li P, Goodall RM. Monitoring lateral track irregularity from in-service railway vehicles. IMechE Pt F: J Rail Rapid Transit 2007; 221(1):89-100, https://doi.org/10.1243/0954409JRRT64.
  • 34. Weston, P. F., Roberts, C., Yeo, G., Stewart, E. Perspectives on railway track geometry condition monitoring from in-service railway vehicles, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility 2015; 53(7):1063–1091, https://doi.org/10.1080/00423114.2015.1034730.
  • 35. Xing Z, Chen Y, Qing Y. On-line monitoring of vertical long wavelength track irregularities using bogie pitch rate, Journal of Vibroengineering 2015; 17(1):216–228.
  • 36. Xu J, Wang P, Gao Y, Chen J, Chen R. Geometry evolution of rail weld irregularity and the effect on wheel-rail dynamic interaction in heavy haul railways. Engineering Failure Analysis 2017; 81:31-44, https://doi:10.1016/j.engfailanal.2017.07.009.
  • 37. Yazawa E, Takeshita K. Development of measurement device of track irregularity using inertial mid-chord offset method, Quarterly Report of RTRI 2002; 43(3):125–130. https://doi.org/10.2219/rtriqr.43.125
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4039478-1afd-41a1-bec7-dafb2858eece
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.