PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transport features of a new, self-attuned conveyor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The new vibratory conveyor destined for the accurate dosing of materials was investigated in the present work. The possibilities of the system to transport materials in the circum-resonant zone were tested analytically, as well as by simulations. The optimal work point of the system, which allowed a decrease in the amplitude of eliminator vibrations on its suspension due to operations on the resonance slope, was determined. Transport velocities depending on the excitation frequency and feed mass were determined by simulations. The results were verified on the conveyor of industrial dimensions designed and built in accordance with the patent application.
Czasopismo
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • AGH University of Science and Technology; Mickiewicza av. 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology; Mickiewicza av. 30, 30-059 Kraków, Poland
Bibliografia
  • 1. PL 239290 A1. Vibratory Conveyor. PL. (Surówka, W. & Czubak, P.) Publ. 6.08.2021.
  • 2. Czubak, P. & Surówka, W. Influence of the excitation frequency on operations of the vibratory conveyor allowing for a sudden stopping of the transport. Vibrations in Physical Systems. 2020. P. 1-12.
  • 3. Despotovic, Ž.V. & Ribić, A.I. & Terzić, M.V. A Comparison of Energy Efficiency of SCR Phase Control and Switch Mode Regulated Vibratory Conveying Drives. IX Symposium Industrial Electronics INDEL 2012. Banja Luka, November 01-03, 2012. P. 103-110.
  • 4. Michalczyk, J. & Cieplok, G. Selection of the vibrator in the vibration machine taking into consideration the disturbances generated by collisions with feed. Mechanika. 2000. Vol. 19. No. 2. P. 221-232.
  • 5. US 989958 A. Device for Damping Vibrations of Bodies. US. (Frahm, H.) Publ. 18.04.1909.
  • 6. Shen, Y. & Xing, Z.B. & Yang, S. & Sun, J. Parameters optimization for a novel dynamic vibration absorber. Mechanical Systems and Signal Processing. 2019. Vol. 133. No. 106282.
  • 7. Despotovic, Ž.V. & Urukalo, D. & Lečić, M.R. & et al. Mathematical modeling of resonant linear vibratory conveyor with electromagnetic excitation: simulations and experimental results. Applied Mathematical Modelling. 2017. Vol. 41. P. 1-24.
  • 8. Czubak, P. Reduction of forces transmitted to the foundation by the conveyor or feeder operating on the basis of the Frahm’s eliminator, at a significant loading with feed. Archives of Mining Sciences. 2012. Vol. 57. No. 4. P. 1121-1136.
  • 9. Ganapathy, S. & Parameswaran, M.A. Effect of material loading on the starting and transition over resonance of a vibratory conveyor. Mechanism and Machine Theory. 1987. Vol. 22. No. 2. P. 169-176.
  • 10. Bednarski, Ł. & Michalczyk, J. Modelling of the Working Process of Vibratory Conveyors Applied in the Metallurgical Industry. Archives of Metallurgy and Materials. 2017. Vol. 62. No. 2. P. 721-728.
  • 11. Michalczyk, J. Phenomenon of force impulse restitution in collision modelling. Journal of Theoretical and Applied Mechanics. 2008. Vol. 46. No. 4. P. 897-908.
  • 12. Jiao, C. & Liu, J. & Wang, Q. Dynamic Analysis of Nonlinear Anti-Resonance Vibration Machine Based on General Finite Element Method. Advanced Materials Research. 2012. Vol. 443-444. P. 694-699.
  • 13. Sokolov, I.J. & Babitsky, V.I. & & Halliwell, N.A. Autoresonant vibro-impact system with electromagnetic excitation. Journal of Sound and Vibration. 2007. Vol. 308. Nos. 3-5. P. 375-391.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b401c928-e675-411c-8fcd-9d5eba8e87ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.