PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Modular J-PET represents the latest advancement in the Jagiellonian-PET series, utilizing extended plastic scintillator strips. This prototype's modular design enables cost-effective imaging of multi-photon annihilation and positronium, allowing for easy assembly, portability, and versatility. Additionally, its lightweight construction facilitates static bed examinations with a mobile detection system that can be positioned conveniently alongside the patient, negating the requirement for spacious clinical settings. Comprising 24 modules arranged in regular 24-sided polygons circumscribing a 73.9 cm diameter circle, each module integrates 13 scintillator strips, measuring 50 cm in length and 6 mm × 24 mm in cross-section. Scintillation light is captured at both ends through analog Silicon Photomultipliers (SiPMs). This research presents Sensitivity of the Modular J-PET tomograph, adhering to the NEMA_NU 2-2018 standards. Sensitivity measurement was performed with 68Ge line source inside the 5 sleeves aluminium phantom placed at center of the detector`s field-of-view (FOV) and 10 cm offset from the center of detector. Analyzing the gathered data involved employing the specialized J-PET Framework software, developed within the C++ architecture. To validate the experimental findings, comparisons were made with GATE simulations, wherein the source and phantom were emulated in the same configuration as employed in the actual experiment. The system sensitivity of the Modular J-PET was assessed to be 1.03 ± 0.02 cps/kBq in the center of the detector`s FOV with the peak sensitivity of 2.1 cps/kBq. However, the simulations indicate that at the center of the detector's FOV, the Modular J-PET achieves a system sensitivity of 1.32 ± 0.03 cps/kBq, with a peak sensitivity of 2.9 cps/kBq.
Rocznik
Strony
132--138
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
  • Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
  • Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Alavi A, Werner T, Stepien E, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems. 2021;17:203-12.
  • 2. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:35.
  • 3. Surti S, Pantel AR, Karp JS. Total Body PET: Why, How, What for?. IEEE Trans Radiat Plasma Med Sci. 2020;4(3):283-92.
  • 4. Alavi A, Saboury B, Nardo L, Zhang V, Wang M, Li H, et al. Potential and most relevant applications of total body PET/CT imaging. Clin Nucl Med. 2022;47:43-55.
  • 5. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multi-photon PET scanner. Sci Adv. 2021;7:eabh4394.
  • 6. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol. 2021;66:175015.
  • 7. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res A. 2014;764:317-28.
  • 8. Moskal P, Zoń N, Bednarski T, Białas P, Czerwiński E, Gajos A, et al. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronised model signals. Nucl Instrum Methods Phys Res A. 2015;775:54-80.
  • 9. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A. et al. J-PET: a new technology for the whole-body PET imaging. Acta Phys Polon B. 2017;48:1567-70.
  • 10. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol. 2019;64:055017.
  • 11. Moskal P, Jasińska B, Stępień E, Bass SD. Positronium in Medicine and Biology. Nat. Rev. Phys. 2019;1(9):527-9.
  • 12. Krzemien W, Alfs D, Białas P, Czerwiński E, Gajos A, et al. Overview of the software architecture and data flow for the J-PET tomography device. Acta Phys Polon B. 2016;47:561.
  • 13. Kowalski P, Wiślicki W, Raczyński L, Alfs D, Bednarski T, Białas P, Głowacz B, et al. Scatter fraction of the J-PET tomography scanner. Acta Phys Polon B. 2016;47:549.
  • 14. Moskal P, Stepien E. Prospects and clinical perspectives of total-body PET imaging using plastic scintillator. PET Clinics. 2020;15(4):439-52.
  • 15. National Institute of Standards and Technology, 2020 [cited 2023 Dec 11]. Available from: https://nist.gov/pml.
  • 16. Crystal [cited 2023 Dec 11]. Available from: https://www.crystals.saint-gobain.com/.
  • 17. Vilardi I, Braem A, Chesi E, Ciocia F, Colonna N, Corsi F, et al. Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept. Nucl Instrum Methods Phys Res. 2006;564:506-14.
  • 18. Mao R, Zhang L, Zhu RY. Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics. IEEE Trans. Nucl. Sci. 2008;55:2425-31.
  • 19. Korcyl G, Bialas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA SoC Devices. IEEE Trans. Med. Imaging. 2018;37(11).
  • 20. Dadgar M, Parzych S, Tayefi Ardebili F. A Simulation Study to Estimate Optimum LOR Angular Acceptance for the Image Reconstruction with the Total-Body J-PET. Med Image Anal. 2021;12:189-200.
  • 21. Dadgar M, Kowalski P. GATE Simulation Study of the 24-Module JPET Scanner: Data Analysis and Image Reconstruction. Acta Phys. Pol. B 2020;51:309-11.
  • 22. Palka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki S, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J. Instrum. 2017;12:08.
  • 23. Kapłon L, Moskal G. Blue-emitting polystyrene scintillators for plastic scintillation dosimetry. Bio-Algorithms and Med-Systems. 2021;17(3):191-7.
  • 24. Moskal P, Bednarski T, Niedzwiecki S, Silarski M, Czerwinski E, Kozik T, et al. Synchronization and Calibration of the 24-Modules J-PET Prototype With 300-mm Axial Field of View. IEEE Trans Instrum Meas. 2021;70:1-10.
  • 25. NEMA Standards Publication NU 2-2018: Performance Measurements of Positron Emission Tomographs. National Electrical Manufacturers Association. Rosslyn VA, USA, 2018.
  • 26. 3M [cited 2021 Mar 24]. Available from: https://www.3m.com.
  • 27. Dupont [cited 2021 Mar 24]. Available from: https://www.dupont.com.
  • 28. Kaplon L. Technical Attenuation Length Measurement of Plastic Scintillator Strips for the Total-Body J-PET Scanner. IEEE Trans. Nucl. Sci. 2020; 67(10): 2286-9.
  • 29. Korcyl G, Białas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evalation of single-chip, real-time tomographic data processing on fpga soc devices. IEEE Trans. Med. Imaging. 2018;37:2526-35.
  • 30. Krzemien W, Gajos A, Kacprzak K, Rakoczy K, Korcyl G. J-pet framework: Software platform for pet tomography data reconstruction and analysis. SoftwareX. 2020;11:100487.
  • 31. Sharma S, Chhokar J, Curceanu C, Czerwiński E, Dadgar M, Dulski K, et al. Estimating relationship between the Time Over Threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys. 2020;7:39.
  • 32. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004; 49(19):4543-61.
  • 33. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881.
  • 34. Sarrut D, Bała M, Bardies M, Bert J, Chauvin M, Chatzipapas K, et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol. 2021; 66(10):10TR03.
  • 35. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4-a simulation toolkit. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2003;506:250.
  • 36. Kowalski P, Raczyński L, Bednarski T, Białas P, Czerwiński E, Giergiel K, et al. Determination of the map of efficiency of the Jagiellonian Positron Emission Tomograph (J-PET) detector with the GATE package. Bio-Algorithms and Med-Systems. 2014;10(2):85-90.
  • 37. Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in GEANT4. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2016;835:186.
  • 38. Kowalski P, Moskal P, Wislicki W, Raczynski L, Bednarski T, Bialas P, et al. Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package. Acta Phys Pol A. 2015;127:1505-12.
  • 39. Eljentechnology [cited 2021 Mar 24]. Available from: https://eljentechnology.com/images/technical\_library/Physical-Constants-Plastic.pdf.
  • 40. Dadgar M, Parzych S, Baran J, Chug N, Curceanu C, Czerwiński E, et al. Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators. EJNMMI Phys. 2023; 10(62).
  • 41. Spencer B, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uExplorer total-body pet/ct scanner based on NEMA-nu 2-2018 with additional tests to characterize pet scanners with a long axial field of view. J Nucl Med. 2021;61:861.
  • 42. Karp J, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager. J Nucl Med. 2020;61(1):136-43.
  • 43. Prenosil G, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance Characteristics of the Biograph Vision Quadra PET/CT System with a Long Axial Field of View Using the NEMA NU 2-2018 Standard. J Nucl Med. 2022;63(3):476-84.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3fe5b3a-dcce-4f75-b586-3a753f474331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.