PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of alkaline promoters on the properties of the Ni/HAp catalyst in the methane dry reforming reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reforming of methane with carbon dioxide is still of great interest due to the ever-increasing demand for synthesis gas and hydrogen. This process makes it possible to use two major gases that are considered harmful to the environment. The main problem for its commercial application is the lack of a catalyst that is both active, selective towards syngas (a mixture of hydrogen and carbon monoxide) and resistant to deactivation by coke deposition. Nickel is the most commonly used metal in methane reforming reactions due to its high activity and reasonable price. But still there is a gap in the literature for research on novel catalysts and their properties modifications devoted to strategies to reduce deactivation of the catalysts caused by the coke formation. In the present work a series of hydroxyapatite supported nickel catalysts promoted by alkali metals (Li, Na, K and Cs) were tested. The surface and structural properties of the catalysts were well characterized by physicochemical methods. Activity and selectivity were measured at 600ºC for 20 hours’ time-on-stream test. Resistance to coking was measured with Magnetic Suspension Balance. The stability of the catalyst was improved by the addition of promoters, which reduced the rate of coking. In particular, the cesium-promoted Ni/HAp catalyst significantly inhibited coke deposition, while slightly reducing methane conversion and selectivity to hydrogen.
Rocznik
Strony
art. no. 182856
Opis fizyczny
Bibliogr. 56 poz., tab., wykr.
Twórcy
autor
  • Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Sklodowska Sq., 20-031 Lublin, Poland
  • Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Sklodowska Sq., 20-031 Lublin, Poland
Bibliografia
  • ABDULRASHED, A., JALIL, A. A., GAMBO, Y., 2019. A review on catalyst development for dry reforming of methane to syngas: Recent advances, Renew. Sust. Energy Rev. 108, 175-193.
  • AELLACH, B., EZZAMARTY, A., LEGLISE, J., LAMONIER, J-F., 2010. Calcium-deficient and stoichiometric hydroxyapatites promoted by cobalt for the catalytic removal of oxygenated volatile organic compounds, Catal. Lett. 135, 197-206.
  • AHMED, U., KIM, C., ZAHID, U., LEE, CH-L., HAN, C., 2017. Integration of IGCC and methane reforming process for power generation with CO2 capture, Chem. Eng. Process. 111. 14-24.
  • AL-ZAHRANI, S. A., AL-FATESH, A. S., KAYDOUH, M-N., AL OTAIBI, A., FRUSTERI, F., FAKEEHA, A. H., EL HASSAN, N., 2023. High carbon-resistant nickel supported on yttria–zirconia catalysts for syngas production by dry reforming of methane: The promoting effect of cesium, Alex. Eng. J. 74, 371-386.
  • ARAMOUNI, N. A. K., TOUMA, J. G., TARBOUSH B. A., ZEAITER, J., AHMAD, M. N., 2018. Catalyst design for dry reforming of methane: Analysis review, Renew. Sustain. Energy Rev. 82, 2570-2585.
  • BARROSO-QUIROGA, M. M., CASTRO-LUNA, A. E., 2010. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane, IJHE 35, 6052-6056.
  • BHAVANI, A. G., KIM, W. Y., Kim, J. Y., LEE, J. S., 2013. Improved activity and coke resistance by promoters of nanosized trimetallic catalysts for autothermal carbon dioxide reforming of methane, Appl. Catal. A 450, 63-72.
  • BIAN, Z., DAS, S., WAI, M. H., HONGMANORON, P., KAWI, S., 2017. A review on bimetallic nickel-based catalysts for CO2 reforming of methane, ChemPhysChem 18(22), 3117-3134.
  • BOROWIECKI, T., RYCZKOWSKI, J., 2006. Promoters of the catalysts for methane conversion into synthesis gases, Focus on catalysis research. USA: Nova Science Publishers Inc. 101-146.
  • BRADFORD, M. C. J., VANNICE, M. A., 1999. CO2 reforming of CH4, Catal. Rev. Sci. Eng. 41, 1-42.
  • CHANG, J-S., PARK, S-E., CHON, N., 1996. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts, Appl. Catal. A 145, 111-124.
  • CHANG, J-S., PARK, S-E., YOO, J. W., PARK, J-N., 2000. Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane, J. Catal. 195, 1-11.
  • CICHY, M., DOBOSZ, J., BOROWIECKI, T., ZAWADZKI, M., 2017. Glycerol steam reforming over calcium deficient hydroxyapatite supported nickel catalysts, Reac. Kinet. Mech. Catal. 122, 63-83.
  • DE VASCONCELOS, B. R., MINH, D. P., MARTINS, E., GERMEAU, A., SHARROCK, P., NZIHOU, A., 2020. Highly-efficient hydroxyapatite-supported nickel catalysts for dry reforming of methane, IJHE 45, 18502-18518.
  • DOBOSZ, J., CICHY, M., ZAWADZKI, M., BOROWIECKI, T., 2018. Glycerol steam reforming over calcium hydroxyapatite supported cobalt and cobalt-cerium catalysts, J. Energy Chem. 27, 404-412.
  • FAN, M.-S., ABDULLAH, A. Z., BHATIA, S., 2009. Catalytic technology for carbon dioxide reforming of methane to synthesis gas, ChemCatChem 1, 192-208.
  • GHENAI, C., 2010. Combustion of Syngas Fuel in Gas Turbine Can Combustor, Adv. Mech. Eng. 2.
  • GUPTA, K., REHMAN, A., SARVIYA, R., 2010. Bio-fuels for the gas turbine: A review, Renew. Sust. Energ. Rev. 14, 2946-2955.
  • HAKIM, L., YAAKOB, Z., ISMAIL, M., WAN DAUD, W. R., SARI, R., 2013. Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts, Chem. Pap. 67, 703-712.
  • JENSEN, C., DUYAR, M. S., 2021. Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas, Energy Technol. 9, 2100106.
  • JIAO, H., WANG, G.-C., 2023. Theoretical study on dry reforming of methane over a Ni(111) surface under electric fields and with alkali metal additives, Catal. Sci. Technol. 13, 5407-5421.
  • JORIS, S. J., AMBERG, C. H., 1971. Nature of deficiency in nonstoichiometric hydroxyapatites. I. Catalytic activity of calcium and strontium hydroxyapatites, J. Phys. Chem. 75, 3167-3171.
  • KANNAN, S., REBELO, A., LEMOS A. F., BARBA, A., FERREIRA, J. M. F., 2007. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites, J. Eur. Ceram. Soc. 27, 2287-2294.
  • KAWI, S., KATHIRASER, J. N., OEMAR, U., LI, Z., SAW, E. T., 2015. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane, ChemSusChem 8(21) 3556-3575.
  • KOBAYASHI, T., FURUAYA, T., FUJITSUKA, H., TAGO, T., 2019. Synthesis of Birdcage-zeolite encapsulating ultrafine Pt nanoparticles and its application in dry reforming of methane, Chem. Eng. J. 377, 120203.
  • KONDRATENKO, V. A., KARIMOVA, U., KASIMOV, A. A., KONDRATENKO, E. V., 2021. Methane conversion into synthesis gas over supported well-defined Pt, Rh or Ru nanoparticles: Effects of metal and support, Appl. Catal. A 619, 118143.
  • LIU, B. S., AU, C. T., 2003. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas, App. Catal. A 244, 181-195.
  • LUNA, A. E. C., IRIARTE, M. E., 2008. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst, Appl. Catal. A 343, 10-15.
  • LUNSFORD, J. H., 2000. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century, Catal. Today 63, 165-174.
  • MAJOUMERD, M. M., De, S., ASSADI, M., BREHAUS, P., 2012. An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration, Appl. Energ. 99, 280-290.
  • MENG, J., GU, T., PAN, W., BU, C., ZHANG, J., WANG, X., LIU, C., XIE, H., PIAO, G., 2022. Promotional effects of defects on Ni/HAP catalyst for carbon resistance and durability during dry reforming of methane, Fuel 310, 122363.
  • MINIACH, E., SLIWIAK, A., MOYSESOWICZ, A., GRYGLEWICZ, G., 2016. Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst, J. Mater. Sci. 51, 5367-5376.
  • MONDAL, K. C., CHOUDHARY, V. R., JOSHI, U. A., 2007. CO2 reforming of methane to syngas over highly active and stable supported CoOx (accompanied with MgO, ZrO2 or CeO2) catalysts, App. Catal. A:Gen. 316, 47-52.
  • NORSTEBO, V. S., MIDTHUN, K. T., BJORKVOLL, T. H., KOLBEINSEN, L., 2012. Use of natural gas with high CO2 content in an integrated industrial park, ISIJ Int. 52, 1439-46.
  • OWGI, A. H., JALIL, A. A., HUSSAIN, I., HAMBALI, H. U., NABGAN, W., 2022. Enhancing resistance of carbon deposition and reaction stability over nickel loaded fibrous silica-alumina (Ni/FSA) for dry reforming of methane, IJHE 47, 42250-4226.
  • PAKHARE, D., SPIVEY, J., 2014. A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev. 43(22), 7813-7837.
  • PARK, J. H., LEE, D.-W., LEE, Y. H., SUH, D.-J., JUN K.-W., 2012. Oxidative coupling of methane using non-stoichiometric lead hydroxyapatite catalyst mixtures, Fuel 94, 433-439.
  • PASHCHENKO, D., MAKAROV, I., 2021. Carbon deposition in steam methane reforming over Ni-based catalyst: Experimental and thermodynamic analysis, Energy 222, 119993.
  • PHAN, T. S., MINH, D. P., 2023. New performing hydroxyapatite-based catalysts in dry-reforming of methane, IJHE 48, 30770-30790.
  • PRASAD, J. S., MUTHUKUMARA, P., DESAI, F., BASU, D. N., RAHMAN, M. M., 2019. A critical review of high-temperature reversible thermochemical energy storage systems, Appl. Energy 254, 113733.
  • PRIHANTO, A., MURYANTO, R., ISMAIL, R., JAMARI, J., BAYUSENO, A. P., 2023. Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and temperature levels, Inorg. Chem. Commun. 157, 111301.
  • QIN, Z., CHEN, J., XIE, X., LUO, X., JI, H., 2020. CO2 reforming of CH4 to syngas over nickel based catalysts, Environ. Chem. Lett. 18, 997-1017.
  • QU, P.-F., WANG, G.-C., 2022. Theoretical insight into the strong size-dependence of dry reforming of methane over Ru/CeO2, J. CO2 Util. 35, 102221.
  • REZAEI, M., ALAVI, S. M., SAHEBDELFAR, S., BAI, P., LIU, X., YAN, Z.-F., 2008. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts, App. Catal. B 77, 346-354.
  • ROSTRUP-NIELSEN, J. R., 1997. Industrial relevance of coking, Catal. Today 37(3), 225-232.
  • ROSTRUP-NIELSEN, J. R., HANSEN J. H. B., 1993. CO2-Reforming of methane over transition metals, J. Catal. 144, 38-49.
  • SHARIFIANJAZI, F., ESMAELKHANIAN, A., BAZLI, L., ESKANDARINEZHAD, S., KHAKSAR, S., SHAFIEE, P., YUSUF, M., ABDULLAH, B., SALAHSHOUR, P., SADEGHI, F., 2022. A review 0on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts, IJHE 47, 42213-42233.
  • SINGHA, R. K., YADAV, A., SHUKLA, A., KUMAR, M., BAL, R., 2017. Low temperature dry reforming of methane over Pd-CeO2 nanocatalyst, Catal. Commun. 92, 19-22.
  • TRAN, T. Q., MINH, D. P., PHAN, T. S., PHAM Q. N., XUAN, H. N., 2020. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts, Chem. Eng. Sci. 31, 115975.
  • WANG, Y., HE, L., LI, W., 2023. Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming, J. Fuel Chem. Technol. 51, 977-985.
  • WYSOCKA, I., MIELEWCZYK-GRYŃ, A., ŁAPIŃSKI, M., CIEŚLIK, B., ROGALA, A., 2021. Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming, IJHE 46, 3847-3864.
  • YASUKAWA, A., GOTOH, K., TANAKA, H., KONDORI, K., 2012. Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions, Colloid Surf. A. 293, 53-59.
  • ZAIN, M. M., MOHAMED, A. R., 2018. An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents, Renew. Sustain. Energy Rev. 98, 56-63.
  • ZHANG, G., LIU, J., XU, Y., 2018. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010 – 2017), IJHE 43, 15030-15054.
  • ZHANG, Z. L., TSIPOURIARI, V. A., ESFATHIOU, A. M., VERYKIOS, X. E., 1996. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts, J. Catal. 158, 51-64.
  • ZHOU, Z., CHENG, K., KANG, J., ZHOU, C., SUBRAMANIAN, V., ZHANG, Q., WANG, Y., 2019. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, Chem. Soc. Rev. 48, 3193-3228.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3f43692-cac2-4381-b862-369eb944548c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.