PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activity of Antioxidant Enzymes under Induced Oxidative Stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reactive oxygen species (ROS) include both oxygen free radicals and highly reactive oxygen compounds (such as ozone, singlet oxygen). They are formed in many metabolic processes, as well as under the influence of various environmental factors. Their impact on cells depends on their concentration and the duration of the process. Excessive level of ROS in a cell leads to oxidative stress. One of the defence mechanisms against ROS corresponds to antioxidant enzymes including SOD and CAT. This paper defines the changes in the activity of antioxidant enzymes caused by oxidative stress induced by nickel and paraquat in tissue of Acheta domesticus L, derived from various development lines. The obtained results defining the activity of SOD and CAT indicated the differences among individual tissues and the midgut showed the highest activity. Increased activity in relation to the control group results of CAT and SOD in the midgut and fat body of B-line individuals treated with pro-oxidant (particularly nickel) and inhibition of the CAT activity in the midgut of L-line crickets influenced by pro-oxidant indicate that the conducted screening changes the biochemical response to the stress factors. Moreover, the obtained results may indicate the relation of the activity of SOD and CAT with the lifespan of the tested insects.
Słowa kluczowe
Rocznik
Strony
42--51
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Central Mining Institute, Department of Water Protection, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A. & Gupta S. 2012. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol, 10(49), 1–31.
  • 2. Ahmad A., Duval D. L., Weinhold, L.C. & Pardini R.S. 1991. Cabbage looper antioxidant enzymes: tissue specifity. Insect Biochemistry, 21, 563−572.
  • 3. Aigaki T., Seong K., & Matsuo T. 2002. Longevity determination genes in Drosophila melanogaster. Mech Ageing Dev., 123(12), 1531−1541.
  • 4. Arking R. 2006. The Biology of Aging. Observations and Principles (3rd edition). Oxford University Press.
  • 5. Arking R., Burde V., Graves K., Hari R., Feldman E., Zeevi A., Soliman S., Saraiya A., Buck S., Vettraino J., Sathrasala K., Wehr N. & Levine R.L. 2000. Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp. Gerontol., 2(35), 167−185.
  • 6. Aziz N., Butt A. & Elsheikha H.M. 2020. Antioxidant enzymes as biomarkers of Cu and Pb exposure in the ground spiders Lycosa terrestris and Pardosa birmanica. Ecotoxicology and Environmental Safety, 190(1), 110054.
  • 7. Breitenbach M. & Eckl P. 2015. Introduction to Oxidative Stress in Biomedical and Biological Research. Biomolecules, 5(2), 1169–77.
  • 8. Choi J., Roche H., & Caquet T. 1999. Characterization of superoxide dismutase activity in Chironomus riparius Mg. (Diptera, Chironomidae) larvae – a potential biomarker. Biochem. Physiol. C. 124(1), 73−81.
  • 9. Czerska M., Mikołajewska K., Zieliński M., Gromadzińska J. & Wąsowicz W. 2015. Today’s Oxidative Stress Markers. Medycyna Pracy, 66(3), 393–405.
  • 10. Eddleston M. 2020. Poisoning by pesticides. Medicine. 48(3), 214–217.
  • 11. Felton G.W., & Summers C. B. 1995. Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29(2),187−197.
  • 12. Finkel T., Holbrook N.J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–47.
  • 13. Glasauer A., & Chandel N.S. 2013. ROS. Current Biology, 23(3), 100–101.
  • 14. Kasapoglu M., & Ozben T. 2001. Alterations of antioxidant enzyme and oxidative stress markers in aging. Experimental Gerontology, 36(2), 209−220.
  • 15. Katerji M., Filippoav M. & Duerksen-Hughes P. 2019. Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field, Oxidative Medicine and Cellular Longevity, 2019, 1–29.
  • 16. Kirby K., Hu J., Hilliker A.J. & Phillips J.P. 2002. RNA interference-mediated silencing of SOD2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc. Natl. Acad. Sci. USA, 99(25), 16162−16167.
  • 17. Korsloot A., van Gestel C.A. & van Straalen N. 2004. Environmental stress and cellular response in Arthropods. CRC Press.
  • 18. Lee S.H. & Min K-J. 2019. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. Translational Medicine of Aging, 3, 98–103.
  • 19. Li H., Hong T., Zhu Q., Wang S., Huang T., Li X., Lian Q., Ge R-S. 2019.Paraquat exposure delays late-stage Leydig cell differentiation in rats during puberty. Environmental Pollution. 255, 113316.
  • 20. Liu X., Liu M., Tang C., Xiang Z., Li Q., Ruan X., Xiong K., Zheng L. 2018. Overexpression of Nmnat improves the adaption of health span in aging Drosophila. Experimental Gerontology, 108, 276–283.
  • 21. Luo J., Mills K., le Cessie S., Noordam R. & van Heemst D. 2020. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Research Reviews, 5, 100982.
  • 22. Macías-Núñez J.F., Gregori J-A.A. López-Novoa J-M. 2020. Biology of the Aging Process. Encyclopedia of Biomedical Gerontology. 272–295.
  • 23. Mackay W.J., & Bewley G.C. 1989. The genetics of catalase in Drosophila melanogaster: isolation and characterization of a catalase mic mutants. Genetics, 122(3), 643−652.
  • 24. Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. 2014. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biology, 2, 535–562.
  • 25. Mockett R.J., Orr W.C., Rahmandar J.J., Sohal B.H. & Sohal R.S. 2001. Antioxidant status and stress resistance in longand short lived lines of Drosophila melanogaster. Exp. Geront., 36(3), 441−463.
  • 26. Ochsendorf, F.R. 1999. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update, 5(5), 399–420.
  • 27. Orr W.C. & Sohal R.C. 1994. Extension of lifespan by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263(5150), 1128−1130.
  • 28. Orr W.C., & Sohal R.S. 2003. Does overexpression of Cu,Zn−SOD extend life span in Drosophila. Exp. Gerontol. 38 (3), 227−230.
  • 29. Ott, M., Gogvadze, V., Orrenius, S. & Zhivotovsky, B. (2007) Mitochondria, Oxidative Stress and Cell Death. Apoptosis, 12, 913–922.
  • 30. Parkes T. L., Elia A.J., Dickinson D., Hilliker A.J., Phillips J.P., Boulianne G.L. 1998. Extension of Drosophila lifespan by overexpression of human SOD1 in motoneurons. Nat. Genet., 19(2), 171−174.
  • 31. Paul A., Belton A., Nag S., Martin I., Grotewiel M. S. & Duttaroy A. 2007. Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech. Ageing Dev., 128(911−12), 706−716.
  • 32. Phaniendra A., Jestadi D.B., Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem., 30(1), 11–26.
  • 33. Pomatto L.C.D. & Davies K.J.A. 2018. Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine. 124(20), 420–430
  • 34. Pruchniak M.P., Araźna M. & Demkow U. 2016. Biochemistry of Oxidative Stress. Advs. Exp. Medicine, Biology – Neuroscience and Respiration, 17, 9–19.
  • 35. Rao P.S, Kalva S., Yerramilli A., Mamidi S. 2011. Free Radicals and Tissue Damage: Role of Antioxidants. Free Radicals and Antioxidants. 1(4), 2–7.
  • 36. Qiu W., Chen X., Tian Y., Wu D., Du M. &Wang S. 2020. Protection against oxidative stress and antiaging effect in Drosophila of royal jelly-collagen peptide. Food Chem Toxicol.,135, 110881.
  • 37. Rose M.R., Passananti H.B. & Matos M. 2004. Methuselah flies: A case study in the evolution of aging. World Scientific Publishing.
  • 38. Saint-Denis M., Labrot F., Narbonne J.F. & Ribera D. 1998. Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Arch Environ Contam Toxicol., 35(4), 602–14.
  • 39. Seslija D., Blagojevic D., Spasic D. & Tucic M. 1999. Activity of superoxide dismutase and catalase in the bean weevil (Acanthoscelides obtectus) selected for postponed senescence. Exp. Geront., 34(2), 185−195.
  • 40. Sies H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 11, 613–619.
  • 41. Sies H., 2018. On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7, 122–126.
  • 42. Skulachev V.P. 2012. Mitochondria-targeted antioxidants as promising drugs for treatment of agerelated brain diseases. J Alzheimers Dis., 28(2), 283–9.
  • 43. Sohal R.S.1985. Aging in insects. In G. A. Kerkut, Gilbert L. I. (Ed.) Comprehensive insect physiology biochemistry and pharmacology. Volume 10, Biochemistry (pp. 603−61). Pergamon Press.
  • 44. Storz P. 2006. Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci STKE, 2006(332), 1945–0877.
  • 45. Sun J., Folk D., Bradley T.J. & Tower J. 2002. Induced overexpression of mitochondrial Mn-Superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics, 161(2), 661–672.
  • 46. Tan B.L. & Norhaizan M.E. 2019. Carotenoids: How Effective Are They to Prevent Age-Related Diseases? Molecules. 9, 1–23.
  • 47. Tan B.L., Norhaizan M.E., Liew W.P. & Rahman H.S. 2018. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol., 16(9), 1162.
  • 48. Tvrdá E., Kňažická Z, Bárdos L., Massányi P., Lukáč N. 2011. Impact of oxidative stress on male fertility – a review. Acta Veterinaria Hungarica, 59(4), 465–484.
  • 49. Valko M., Rhodes C. J., Moncola J., Izakovic M., Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. ChemicoBiological Interactions, 160, 1–40.
  • 50. Zhang, C., Liang, W., Wang, H., Yang, Y., Wang T., Wang S., Yang Y., Wang T., Wang S., Wang X., Wang Y., Feng H. 2019. γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-Related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis. Neuropharmacology, 160, 107777.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3f1e5e7-911b-4bf9-9d51-7d8d542b4a87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.