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Abstract

Let a class of proper curves is specified by positive examples only. We aim to propose
a learning novelty detection algorithm that decides whether a new curve is outside this
class or not. In opposite to the majority of the literature, two sources of a curve variability
are present, namely, the one inherent to curves from the proper class and observations
errors’. Therefore, firstly a decision function is trained on historical data, and then, de-
scriptors of each curve to be classified are learned from noisy observations.When the in-
trinsic variability is Gaussian, a decision threshold can be established from T 2 Hotelling
distribution and tuned to more general cases. Expansion coefficients in a selected orthog-
onal series are taken as descriptors and an algorithm for their learning is proposed that
follows nonparametric curve fitting approaches. Its fast version is derived for descriptors
that are based on the cosine series. Additionally, the asymptotic normality of learned
descriptors and the bound for the probability of their large deviations are proved. The in-
fluence of this bound on the decision threshold is also discussed.The proposed approach
covers curves described as functional data projected onto a finite-dimensional subspace
of a Hilbert space as well a shape sensitive description of curves, known as square-root
velocity (SRV). It was tested both on synthetic data and on real-life observations of the
COVID-19 growth curves.
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1 Introduction

Our aim is to propose learning algorithms for
novelty detection. In opposite to the majority of
papers on this topic, which are mainly focused on
vector data, we concentrate on detecting curves
that are outsiders in a class of random functions or
curves. The specific feature of novelty detection,
also known as one-class pattern recognition, is that
a learning sequence contains only positive exam-
ples. The absence of negative examples makes this
problem essentially different than typical classifica-

tion problems (see the citations at the end of this
section). It is closer in spirit to significance tests of
hypothesis and this line of reasoning will be domi-
nating in our considerations. We refer the reader to
[18] for the survey on the nature and types of nov-
elties and anomalies.

In order to be able to collect positive examples
of random curves, we have to assume that there ex-
ists a certain random phenomenon that is repeatable
in the sense that we can observe many different real-
izations of random functions over a certain interval
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method. Then, the obtained estimate can be visually
inspected to detect the segments of rapid and con-
stant intervals of the estimated function variability.
The number of the low variability intervals can be
used as a value for the parameter g that is related to
the memory size of the dynamical part of the Ham-
merstein system.

In conclusion, the PCV (g) method can greatly
improve the accuracy of the kernel GRNN estimate
in the context of the Hammerstein system identi-
fication and as such it is the method of choice in
practical applications.

Regarding the MCV (l) procedure it has been
observed that it works poorly for the case of the pos-
itively correlated residual noise {εt} in (22). Also
the corresponding S-value for MCV (l) is signifi-
cantly smaller than the one of the PCV (g) method.
The algorithms GDCV and GICV do not work well
in almost all examined cases.

Finally, it is worth mentioning that aforemen-
tioned data-driven bandwidth selection methods
have been developed for the fixed design regres-
sion case where the distribution of the input data
does not play any significant role. In the Hammer-
stein system context we have stochastic input pro-
cess with unknown distribution along with the com-
plex residual noise {εt} defined in (22).
For the related studies concerning the classical re-
gression analysis we refer to [29, 34].

6 Future Work

This paper examines several cross-validation data-
driven algorithms for selecting the bandwidth of the
kernel GRNN estimate applied for nonparametric
identification of the Hammerstein system. The con-
ducted experimental studies reveal that the parti-
tioned cross-validation (PCV) method can be rec-
ommended in practical applications of the Hammer-
stein system. Our paper is focusing on the choice
of the global bandwidth. It would be a logical ex-
tension to consider similar studies for the local and
semi-local bandwidth specifications. This would in-
clude the k−nearest neighbor methods and their ex-
tensions such as random forest [12, 13].

The examined bandwidth selection procedures
can also be directly extended to the multiple-input
Hammerstein system [35, 20], where one wishes

to estimate the d−dimensional system nonlinearity
m(u), u ∈ Rd . In this case the kernel GRNN esti-
mate in (6) takes the form

m̂h(u) =
∑n

i=1YiKh(||u−Ui||)
∑n

j=1 Kh(||u−Uj||)
,

where Kh(·) = h−dK(·/h) is the scaled univariate
kernel function. This is the single-bandwidth coun-
terpart of the estimate in (6). The multiple band-
width generalizations of m̂h(u) would be worth fur-
ther studies.

Yet another extension of interest would be to
consider the time-varying version of (11), i.e., when

Yt = mt(Ut)+ εt ,

where mt(·) are functions that smoothly vary with
time. In this case one should design kernel GRNN
estimates that combine smoothing in both the input
signal domain as well as the time domain, see [23]
for some studies into this direction.

In addition, it is worthwhile to explore the band-
width selection problem for other types of impor-
tant block-oriented systems such as Wiener, sand-
wich and parallel models [6].
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[0,τ], τ > 0, which are generated by the underlying
stationary random phenomenon. On the other hand,
we admit that curves can be generated by other pro-
cesses and we have to distinguish them from the for-
mer ones. In particular, batch processes in chemi-
cal, electronic, and ceramic industries are repeat-
able in this sense.

Examples of repeatable processes. Additional ex-
amples of such processes, which also motivate the
proposed approach, include:

– meteorological data such as temperatures, hu-
midity, rainfall at a given site in a selected month
that are compared year to year in order to detect
untypical months,

– air and water pollution observations, collected
and compared in a similar way as above,

– quality characteristics of products for exam-
ple, frequency characteristics of high quality
headphones and loudspeakers,

– detecting untypical signatures of plains, ships,
cars,

– abnormalities in: spreading epidemic diseases
in various countries or in the same country at
different seasons, computer network traffic, etc.

Curves as mathematical objects. From the math-
ematical point of view, curves arising when observ-
ing the above mentioned processes can be consid-
ered as:

1. random functions, denoted as X(t), t ∈ [0,τ] or
random elements (see the next section),

2. randomly generated closed curves, described in
the parametric form,

3. functions attempting to emphasize the curve’s
shape, such as square-root velocity (SRV) de-
scription.

All these cases are covered by our approach, since
– in the most cases – closed curves can be trans-
formed to ordinary functions by expressing them in
polar coordinates, while the SRV curve description
can be handled as follows (see, e.g., [63, 40, 39, 28,
71] for basic facts concerning SRV approach and its
recent extensions and applications).

Shape-sensitive description of curves. Let f (t),
t ∈ [0,τ] be a differentiable function, describing a
curve in the classic way. Its SRV description, de-
noted further as q f (t), is defined as

q f (t) = sgn( f ′(t))
√

| f ′(t)|, (1)

where f ′ stands for the derivative of f , sgn(a) is the
signum of a and q f is well defined at every point of
t ∈ [0,τ], where f ′(t) ̸= 0 .

The following properties of q f are easy to verify:

1. it can be equivalently expressed as

q f (t) =
f ′(t)√
| f ′(t)|

, (2)

2. q f is scale invariant, i.e., q(c f )(t) = q f (t) for ev-
ery c > 0,

3. q f is translation invariant in the vertical direc-
tion, i.e., q(c+ f )(t) = q f (t) for every real con-
stant c,

4. if | f ′(t)| is integrable on [0, τ], then q f (t) is
square integrable there and

∫ τ

0
q2

f (t)dt =
∫ τ

0
| f ′(t)|dt (3)

According to 4, one can define the distance
Ω(q f , qg) between two curves q f and qg as follows

Ω(q f , qg) =
∫ τ

0

∣∣ f ′(t)−g′(t)
∣∣ dt. (4)

In (4) it was tacitly assumed that the time scales
of curves f and g are the same. When one wants
to compare curves with different time scales, then
the so called time warping can be applied, i.e., the
time t is re-scaled by non-decreasing function λ,
say. Thus, one can obtain a better match between
q f and qg by using the following distance

Ω∗(q f , qg)
de f
= inf

γ
Ω(q f oγ, qg), (5)

where f oγ is the composition of functions f and γ
(see [63, 64, 40, 39, 28, 71]) and the bibliography
cited therein, where also an algorithm for comput-
ing γ in (5) by dynamic programming is mentioned).

Summarizing, formally, one can select X(t) =
q f (t) in order to apply all the results of this pa-
per to shape-sensitive description of curves. Notice,
however, that we do not have direct observations of



197Wojciech Rafajłowicz

[0,τ], τ > 0, which are generated by the underlying
stationary random phenomenon. On the other hand,
we admit that curves can be generated by other pro-
cesses and we have to distinguish them from the for-
mer ones. In particular, batch processes in chemi-
cal, electronic, and ceramic industries are repeat-
able in this sense.

Examples of repeatable processes. Additional ex-
amples of such processes, which also motivate the
proposed approach, include:

– meteorological data such as temperatures, hu-
midity, rainfall at a given site in a selected month
that are compared year to year in order to detect
untypical months,

– air and water pollution observations, collected
and compared in a similar way as above,

– quality characteristics of products for exam-
ple, frequency characteristics of high quality
headphones and loudspeakers,

– detecting untypical signatures of plains, ships,
cars,

– abnormalities in: spreading epidemic diseases
in various countries or in the same country at
different seasons, computer network traffic, etc.

Curves as mathematical objects. From the math-
ematical point of view, curves arising when observ-
ing the above mentioned processes can be consid-
ered as:

1. random functions, denoted as X(t), t ∈ [0,τ] or
random elements (see the next section),

2. randomly generated closed curves, described in
the parametric form,

3. functions attempting to emphasize the curve’s
shape, such as square-root velocity (SRV) de-
scription.

All these cases are covered by our approach, since
– in the most cases – closed curves can be trans-
formed to ordinary functions by expressing them in
polar coordinates, while the SRV curve description
can be handled as follows (see, e.g., [63, 40, 39, 28,
71] for basic facts concerning SRV approach and its
recent extensions and applications).

Shape-sensitive description of curves. Let f (t),
t ∈ [0,τ] be a differentiable function, describing a
curve in the classic way. Its SRV description, de-
noted further as q f (t), is defined as

q f (t) = sgn( f ′(t))
√

| f ′(t)|, (1)

where f ′ stands for the derivative of f , sgn(a) is the
signum of a and q f is well defined at every point of
t ∈ [0,τ], where f ′(t) ̸= 0 .

The following properties of q f are easy to verify:

1. it can be equivalently expressed as

q f (t) =
f ′(t)√
| f ′(t)|

, (2)

2. q f is scale invariant, i.e., q(c f )(t) = q f (t) for ev-
ery c > 0,

3. q f is translation invariant in the vertical direc-
tion, i.e., q(c+ f )(t) = q f (t) for every real con-
stant c,

4. if | f ′(t)| is integrable on [0, τ], then q f (t) is
square integrable there and

∫ τ

0
q2

f (t)dt =
∫ τ

0
| f ′(t)|dt (3)

According to 4, one can define the distance
Ω(q f , qg) between two curves q f and qg as follows

Ω(q f , qg) =
∫ τ

0

∣∣ f ′(t)−g′(t)
∣∣ dt. (4)

In (4) it was tacitly assumed that the time scales
of curves f and g are the same. When one wants
to compare curves with different time scales, then
the so called time warping can be applied, i.e., the
time t is re-scaled by non-decreasing function λ,
say. Thus, one can obtain a better match between
q f and qg by using the following distance

Ω∗(q f , qg)
de f
= inf

γ
Ω(q f oγ, qg), (5)

where f oγ is the composition of functions f and γ
(see [63, 64, 40, 39, 28, 71]) and the bibliography
cited therein, where also an algorithm for comput-
ing γ in (5) by dynamic programming is mentioned).

Summarizing, formally, one can select X(t) =
q f (t) in order to apply all the results of this pa-
per to shape-sensitive description of curves. Notice,
however, that we do not have direct observations of

LEARNING NOVELTY DETECTION OUTSIDE A CLASS . . .

q f (t) and one has to use an approximation of the
derivative of f (t) – see [53] for the approach to non-
parametric estimation of derivatives from noisy ob-
servations of f (t).

However, caution is needed in applying this ap-
proach, since in some cases both differences in am-
plitudes and retaining original time scales may be
of importance, e.g., when one compares curves of
the number of infected by COVID-19.

Curves that are not covered in this paper in-
clude space-filling curves, like those constructed by
Hilbert, Peano and Sierpiński, since they are not
sufficiently smooth. However, space-filling curves
are proved to be useful for classification problems
(see [58, 59, 61]).

Outline of the approach. The crucial issue in
stating novelty detection problems is: how to de-
fine a (dis-)similarty measure between processes X,
Y, . . . that are considered as elements of a certain
separable Hilbert space H of functions defined on
[0, τ]. In general, this task is difficult and we con-
fine our attention to curves that can be sufficiently
accurately represented by their orthogonal projec-
tions on K-th dimensional, 1≤K <∞, subspace HK

of H . If a learning sequence is sufficiently long,
then one can approximate any problem of practi-
cal importance just by selecting K sufficiently large.
Any X ∈ HK can be represented by its coefficients
θ̄ = [θ1, θ2, . . . , θK ]

T in a selected, countable basis
of H . We assume that these coefficients are ran-
dom, but not necessarily Gaussian, with θ̄0 as the
mean vector and with K ×K covariance matrix Σ.
This variability is later interpreted as the liability
intrinsic to the class of curves that we want to con-
sider as similar and typical for processes at hand.
This set of curves is later called class "0" of typi-
cal processes. Confining our attention to large but
finite K allows to consider an arbitrary probability
distribution functions of θ̄.

The second source of a random variability in
classifying a process to the class "0" or as the nov-
elty is caused by errors in observations of X. More-
over in this case we do not assume that they have
any particular distribution, except that they have
zero mean and finite variances. Thus, the estima-
tion of X to be classified is a nonparametric one, if
we allow a data driven selection of K. We comment
on this aspect later in the paper.

On the other hand, derivations of the proposed
algorithms go bottom up, in the sense that we tem-
porarily assume normality of θ̄, then an outline of
the algorithm is inferred and generalized to non-
Gaussian cases and finally, its learning version and
statistical properties are presented.

In fact, two kinds of learning algorithms are
considered. The first of them uses historical data
concerning whole curves. Their observations are
collected along [0, τ]. In every case when the pro-
cess at hand starts at t = 0 and ends at t = τ is further
called one pass. For this reason, the procedures that
operate on subsequent historical curves are called
pass-to-pass learning algorithms.

When a new curve to be recognized is acquired,
a learning algorithm of the second kind is activated.
Its role is to learn current curve X from its noisy ob-
servations. Therefore, it is further called the on-line
learning algorithm or learning along one pass. Fi-
nally, these two kinds of algorithms are aggregated
(see Figure 1 for details).

The paper organization and summary of the re-
sults. According to this methodology, the paper and
the results are organized as follows.

– The problem statement is provided in the next
section together with a summary of facts con-
cerning random functions. Additionally, a skele-
tal Algorithm 0 is proposed. It serves as a start-
ing point for constructing a learning Algorithm
1 in Section 3. Algorithm 1 is dedicated for
learning (from retrospective data) the covariance
matrix of intrinsic variability in θ̄ and the corre-
sponding decision function. It is shown that for
the Gaussian variability a threshold for decision
making has the T 2 Hoteling distribution. The
way of tuning this threshold for unknown distri-
bution is also discussed.

– Section 4 contains the proposition of an algo-
rithm for learning one curve X from noisy ob-
servations. It is based on estimating parameters
(descriptors) of the orthogonal expansion of X
in a selected basis. Basic statistical properties of
the learning method are derived using the guide-
lines of nonparametric regression estimators by
orthogonal series. Additionally, the asymptotic
distribution of errors and bounds for their large
deviations are proved. Finally, a fast learning
Algorithm 2 is proposed that is based on the fast
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cosine transform. The results of its testing on
synthetic observations are provided in Section 6.

– Algorithms 1 and 2 are aggregated in Section 5
into Algorithm 3 and then tested on synthetic
data (Section 6) and on the COVID-19 curves,
representing the number of infected people over
time (Section 7).

Related works. In recent fifteen years or so, one
can observe a growing interest of statisticians and
engineers to problems of classifying curves, con-
sidered as whole entities and learning tasks arising
in this context. We refer the reader to monographs
on these topics: [31, 17, 62, 3]. These monographs
contain also a background on results from the func-
tional analysis and random elements that are useful
in this paper. Advanced applications can be found
in [51] and in the most recent monograph [54] in
which even more difficult data structures, namely
data streams, are considered and searching for nov-
elty is more broadly understood – as data mining.

A number of survey papers on functional data
analysis (FDA) were also published [9, 70, 42, 36].

One of the mostly considered problems in the
FDA is the one of classification functional patterns
to one of many classes, usually stated in the empir-
ical, nonparametric, bayesian setting, i.e., class la-
bels are attached to each example by an expert and
it is tacitly assumed that the learning sequence con-
tains sufficiently many examples from each class.
Additionally, it is usually assumed that there ex-
ist a priori probabilities that X was drawn at ran-
dom from each particular class (see [11] for fun-
damental results in the finite-dimensional setting).
As the methods of solution, variants of the func-
tional counterparts of the Parzen kernel method are
developed (see [4, 10, 1, 14, 15, 20, 29] for recent
contributions in this stream of research).

A fundamental for FDA problem of discernibil-
ity of probability density functions (p.d.f.), basing
on infinitely growing sequence of empirical data, is
considered in [12]. The discernibility is understood
as the existence of a sequence of classifying rules
that are able to decide, with a finite number of errors
and with the probability one, whether each given
p.d.f. belongs a pre-specified class of densities
or not.In [12] it was shown, among other results,
that classes of densities, which are unimodal, log-
concave or bounded by a constant are discernible.

Although we shall not further pursue this topic, it is
worth to mention that these distinguishing features
of densities roughly describe their shape properties.
It is also related to curves that have properties of
p.d.f.’s, but for curves we have observations of a dif-
ferent kind.

The problems of classification to one class
when features are finite dimensional is considered
as important for many years. We refer the reader
to [38, 37] for surveys of earlier papers and to
[35, 60, 8] for more recent contributions. It is
also worth to mention that change detection as well
as drift detection and engineering diagnostic prob-
lems are related to novelty detection. Recent papers
[43, 30, 21, 13] exemplify these similarities. The
reader is referred also to [66, 56] for interesting ap-
plications in a jet engine diagnostics and in image
segmentation of video sequences, respectively.

Up to now, the problems of the one-class classi-
fication of curves attracted less attention. We men-
tion recent paper [69] in which an attempt to se-
lect archetypoids for anomaly detection in big func-
tional data was undertaken and [34] where a kernel
type approach was proposed. The following papers
[73, 74] are closer to ours in the sense that orthogo-
nal expansions of functional data are considered as
in our case.

It should be pointed out that the nonparametric
techniques based on orthogonal expansions are de-
veloped for many years. In particular, in classic pa-
pers [24, 25] asymptotically optimal classifiers are
proposed, while in [26] a nonparametric, orthogo-
nal series type estimator of a regression function
is developed for random regressors. We refer the
reader to [27] for further results and an extensive
bibliography of papers on nonparametric estimation
of such regression functions.

Papers on nonparametric regression estimation
by orthogonal expansion in the so-called fixed-
design case (with deterministic regressors) are
closer to our needs. We refer the reader to the pa-
pers [22, 50, 55, 52] that are closely related to our
needs.

Nonparametric, orthogonal expansion tech-
niques were also applied for constructing tests for
normality [33, 67] that can be useful here.
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2 Problem statement and partial
results

We formulate a hierarchy of one-class classifi-
cation problems, starting from a version with full
knowledge of probability distributions and finishing
with our main problem of learning the novelty de-
tection algorithm from historical and current obser-
vations, trying to reduce the number of assumptions
as much as possible. Such a hierarchical formula-
tions of problems and their solutions provides hints
concerning ways of solving more realistic prob-
lems.

In general, an observed random element X̌ ∈ H
has to be classified to the class "0" as typical for it or
as untypical for the class "0" (novelty). This prob-
lem is considered under the following assumptions
that apply throughout the paper.

– H1) Hilbert space H is equipped with a scalar
product < ., . > and it posses a countable or-
thonormal basis Vk, k = 1, 2, . . ..

– H2) For a sufficiently large, but finite, integer
K > 1, subspace HK ⊂ H , spanned by Vk, k =
1, 2, . . .K, contains all1 the elements of the class
"0".

– H3) According to H2), it suffices to consider
X ∈ HK , defined as follows

X =
K

∑
k=1

< X̌, Vk > Vk (6)

as the element to be classified.

– H4) Coefficients θk =< X, Vk >, k = 1, 2, . . .K
are selected at random from a certain probability
distribution on R K with finite second moments.

A classification method should be such that if
X is from the class "0", then the probability of
classifying it as the untypical one (novelty) is not
larger than α, for a preselected significance level2

0 < α < 1. This formulation generalizes to func-
tional observations the classic formulation of one-
class classification. On the other hand, it can
be interpreted as testing the hypothesis H0 : X ∈

class "0" at the significance level 0 < α < 1, while
the alternative is X is not from the class "0". How-
ever, later on, we point out also differences between
this statistical formulation and the proposed algo-
rithms that arise from the need for learning invoked
by rather weak assumptions.

2.1 A link between functional data and ex-
pansion coefficients

In this subsection, we assume that a vector of
coefficients θ̄ = [θ1, θ2, . . .θK ]

T has Gaussian dis-
tribution with θ̄0 as the vector of expected values.
Additionally, we assume that θ1, θ2, . . .θK are mu-
tually independent3 (see [33] for the test that simul-
taneously verifies the assumptions about the nor-
mality and independence of random variables). For
simplicity, we also assume that θk’s have the same
variances4 σ2 = σ2

k > 0, k = 1, 2, . . .K. Thus, σ2 IK

is the covariance matrix of θ̄ , where IK is K ×K
unit matrix.

Thus, θ̄ and the observed random element X can
be expressed as follows

θ̄ = θ̄0 + ε̄, ε̄ ∼ N (0, σ2 IK), X = X0 +Xε,
(7)

where ε̄ ∈ R K is Gaussian with zero mean
vector and variances σ2, while setting V̄K =
[V1, V2, . . . , VK ]

T we have:

X = θ̄T V̄K , X0 = [θ̄0]T V̄K , Xε = ε̄T V̄K .
(8)

Remark 1 Notice that the Gaussian probability
measure PK in RK, related to θ̄, induces – by apply-
ing X = θ̄T V̄K – the Gaussian measure, µK, say, in
HK and for the expectation we have: E(X) = X0,
while variances of the projections: < X, Vk > are
equal to σ2 for k = 1, 2, . . .K. The relationship
X = θ̄T V̄K allows us to apply probabilities PK di-
rectly to X and related random elements in HK.

Under the above assumptions, the problem of
classifying X to the class "0" or deciding that it is
outside this class with the significance level 0<α<
1 can be rephrased as follows find ρ(α) > 0 such
that

PK{||X−X0||2 > ρ(α)} ≤ α, (9)
1We comment on the choice of K further in this paper.
2As in statistics, it is customary to select a relatively small α, e.g., 0.01 or 0.05.
3For Gaussian random variables it suffices to test the lack of correlations.
4Later on we comment on how to relax the assumption on the same variances of random coefficients.
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where norm ||.|| in H is the one induced by < ., . >,
i.e., ||X||2 =< X, X>.

Define mapping J : HK → R K as follows

∀Z∈HK J(Z) = z̄, where z̄
de f
= [z1, z2, . . . , zK ]

T , while
zk =< Z, Vk > k = 1, 2, . . .K.

Corollary 1 (Isometry between HK and R K)
Mapping J is a linear isometry between HK and
R K, which implies the following.

– C1) Inverse mapping J−1 exists and Z can be
uniquely restored from z̄ ∈ R K.

– C2) For every Z ∈ HK we have: ||Z||2 =

∑K
k=1 z2

k .

– C3) For every ρ > 0

PK{||X−X0||2 > ρ} = PK{
K

∑
k=1

(θk −θ0
k)

2 > ρ}.

(10)

Indeed, C1) follows from Z= z̄T V̄K , C2) is the con-
sequence of the orthonormality of Vk’s and

< Y, Z>=
K

∑
k=1

yk zk = ȳT z̄, ȳ = J(Y), (11)

by setting Y = Z, while C3) follows directly from
C2).

2.2 The algorithm outline – an idealized
case

From (7) it follows that the following expression:

K

∑
k=1

(
θk −θ0

k
σ

)2

(12)

has the χ2 distribution with K-th degree of freedom.
Denote by q(α) the (1−α)-quantile of this distri-
bution.

Corollary 2 (Selecting threshold) Comparing
C3) and (12) we obtain:

PK{||X−X0||2 > σ2 q(α)} =

= PK{
K

∑
k=1

(θk −θ0
k)

2 > σ2 q(α)} ≤ α. (13)

Hence, (9) holds for ρ(α) = σ2 q(α).

The following skeletal algorithm summarizes
the above considerations. By (10) it fulfills the theo-
retical requirement at the expense of assumed a pri-
ori information.

Algorithm 0

Step 0) Select a significance level 0 < α < 1 and
calculate ρ(α) = σ2 q(α) for q(α) from χ2 dis-
tribution with K degrees of freedom. Select or-
thonormal basis Vk, k = 1, 2, . . . , K.

Step 1) Acquire (observe) X and calculate
θk =< X, Vk >, k = 1, 2, . . . , K.

Step 2) Check the inequality:

||X−X0||2 =
K

∑
k=1

(θk −θ0
k)

2 > ρ(α). (14)

If it holds, decide that X is not in the class "0"
(declare that X is a novelty). Otherwise, accept
X as an element from class "0". Go to Step 1).

Remark 2 If components of θ̄ are correlated with
K × K covariance matrix Σ, then the vector
Σ−1/2 (θ̄− θ̄0) has Gaussian distribution with IK co-
variance matrix and zero mean vector. Hence, the
quadratic form:

ϕ(θ̄) de f
= (θ̄− θ̄0)T Σ−1 (θ̄− θ̄0) (15)

has the χ2 distribution with K degrees of freedom.

3 Relaxing assumptions by learn-
ing from historical or surrogate
data

Our aim in this subsection is to point out those in-
gredients of Algorithm 0 that can be learned from
historical data: Xn ∈ HK , n = −1,−2, . . . ,−NH

of length NH ≥ 1, belonging to the class "0" only,
where negative subscripts are used to indicate that
these observations were collected in the past and
they are statistically independent from newly com-
ing ones. Let us assume that coefficients θ̄n =

J(Xn), n = −1,−2, . . . ,−NH of historical data are
already calculated.

We consider also the case when one has only
a minimal number of historical data, but the ear-
lier collected knowledge on the process at hand can
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gredients of Algorithm 0 that can be learned from
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ing ones. Let us assume that coefficients θ̄n =
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already calculated.

We consider also the case when one has only
a minimal number of historical data, but the ear-
lier collected knowledge on the process at hand can
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be formulated as a mathematical model that can be
used for generating surrogate observations playing
the same role as historical data.

3.1 Learning from retrospective observa-
tions

When NH is sufficiently large, then one can re-
place a priori knowledge concerning θ̄0 by

ˆ̄θ0 = N−1
H

−1

∑
k=−NH

θ̄n (16)

or by its well-known recurrent version. Analo-
gously, Σ can be replaced by its empirical counter-
part:

Σ̂ =
1

NH −1

−1

∑
k=−NH

(θ̄n − ˆ̄θ0)(θ̄n − ˆ̄θ0)T . (17)

This version of learning Σ̂ is the basic one, but for
computational purposes more advanced and more
accurate algorithms are advised [23], especially for
large covariance matrices [65].

Assume that NH ≥ K. Then, for NH sufficiently
large, one can also assume that Σ̂ is invertible (see,
e.g., [2] for a discussion on this topic). In such a
case, the empirical version of the quadratic form
(15) is given by

ϕ̂(θ̄) de f
= (θ̄− ˆ̄θ0)T Σ̂−1 (θ̄− ˆ̄θ0), (18)

where ϕ̂ depends also on K and on the learning se-
quence, but this is not displayed in the notation.

Remark 3 It is known (see, e.g., [41]) that ϕ̂(θ̄)
has the Hotelling T 2 distribution (or appropriately
rescaled F-distribution) with the degrees of freedom
depending on K and NH. This distribution is di-
rectly used for calculating the threshold ρ(α) (see
also [49]).

Then, similarly as in the theory of designing statis-
tical control charts, it is reasonable to to confront
this threshold with learning data and – if necessary
– to tune it appropriately. Thus, the following two
phase algorithm can be proposed.

Algorithm 1

Learning phase

Step 1 Collect learning data: Xn ∈ HK , n =
−1,−2, . . . ,−NH .

Step 2 Compute ˆ̄θ0 and Σ̂.

Step 3Tuning the threshold: if ϕ̂(θ̄n)≤ ρ(α)
for all n = −1,−2, . . . ,−NH , then set ρ̂ =
ρ(α) and go to the Application phase. Other-
wise, set

ρ̂ = max
−NH≤n≤<−1

[
ϕ̂(θ̄n)

]
. (19)

Application phase
Acquire (observe) X and calculate elements of θ̄
as: θk =< X, Vk >, k = 1, 2, . . . , K.

Check the inequality: ϕ̂(θ̄) > ρ̂ and if it holds,
decide that X is not in the class "0" (declare that
X is a novelty). Otherwise, accept X as an ele-
ment from the class "0" and acquire new X for
testing.

Corollary 3 (Algorithm 1 correctness) For the
Gaussian distribution of historical and current ob-
servations, if Σ̂ is nonsingular, then – by construc-
tion – Algorithm 1 may erroneously reject X from
the class "0" with the probability not larger than
preselected 0 < α < 1.

If observations are not Gaussian, then one can re-
place the test statistics (18) by the one recently pro-
posed in [32]. This statistic is based on the ranks
and it is a nonparametric one.

Algorithm 1 is ready for use with one excep-
tion, namely, one has to point out how to evaluate
θk =<X, Vk >, k = 1, 2, . . . , K for current and his-
torical data. This topic is discussed in the next sec-
tion.

3.2 Learning from model-based surrogate
data

It may happen that we do not have enough historical
observations. In the extreme case, NH = 1, as in the
case study presented in the final section. However,
if we have a mathematical model of the process at
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hand, then it is still possible to use Algorithm 1 by
generating surrogate observations.

The outline of this approach is the following.
Assume that we have a model F(ā) ∈ HK , or in a
more detailed form:

Y(t) = F(ā)(t), t ∈ [0, τ], (20)

where ā ∈ R d , d ≥ 1 is the vector of tunable param-
eters. This model can be given explicitly as in (20)
or implicitly, e.g., as a solution of a certain differ-
ential equation.

Assume also that for certain ā0 ∈ R d we are
able to generate the central element of the class "0",
i.e., X0 = F(ā0).

Method of generating surrogate data

Stage 1 Model tuning: having historical obser-
vations Xn ∈ HK , n = −1,−2, . . . ,−NH at our
disposal, one can estimate ā0 in the obvious, but
not always computationally simple, way as

ˆ̄a0 = argmin
ā

−NH

∑
n=−1

||Xn −F(ā)||2. (21)

Stage 2 Data generation: select number NS ≥
1 of surrogate observations X̂n and for n =
(−NH − 1), (−NH − 2), . . . , (−NH −NS) calcu-
late

X̂n = F( ˆ̄a0 + η̄n), (22)

where η̄n ∈ R d are i.i.d. samples from a certain,
e.g., Gaussian, distribution with zero mean and
the unit covariance matrix.

Stage 3 Concatenate the historical data Xn,
n = −1,−2, . . . ,−NH and the surrogate data
X̂n, n=(−NH −1), (−NH −2), . . . , (−NH −NS)
into the learning sequence.

After extending the learning sequence, feed it as the
input of Algorithm 1 or as inputs of algorithms that
are described in the next sections.

4 Learning algorithm from data
along one pass

As it was assumed in the Introduction, the process
under consideration is a repetitive one. It consists

of passes for t ∈ [0, τ]. Along each pass we ob-
serve random element X(t), t ∈ [0, τ] and similar
functions, e.g., retrospective data. The aim of this
section is to propose a learning algorithm that en-
ters into details of estimating θk =< X, Vk >’s and
related expansion coefficients that are needed in Al-
gorithm 1, where X is current random element to be
classified.

We would like to derive a learning algorithm
that is convergent to θ̄ and we can asses its ac-
curacy, at least for a sufficiently large number of
observations. Here, we mention only that in our
case θ̄ and related expansion coefficients are ran-
dom. Thus, expectations, variances etc., that appear
in our derivations will be conditioned on θ̄. Hence,
also our conclusions will be conditionally PAC.

4.1 Learning of one curve – theoretical
foundations

In order to derive a learning algorithm, we have to
be more detailed in specifying HK and observations.

4.1.1 More specialized assumptions

The following assumptions specialize or extend
those listed as H1) - H4).

h1) As Hilbert space H we take L2(0, τ) with
the inner product and the norm:

<Y, Z>=
∫ τ

0
Y(t)Z(t)dt, ||Y||2 =<Y, Y> .

The orthonormal and complete in L2(0, τ) se-
quence Vk, k = 1, 2, . . . consists of abso-
lutely continuous functions that are commonly5

bounded, i.e., there exists 0 < ω < ∞ such that
∀k ∀t∈[0,τ] |Vk(t)| ≤ ω.

h2) Element X is either from HK or

||X−
K

∑
k=1

θkVk||2 =
∞

∑
k=K+1

θ2
k ≤ C/K (23)

for a certain constant 0<C <∞ that may depend
on X, but not on K, while θk =< X, Vk >.

5This assumption is made for simplicity of formulas. It can be relaxed by admitting that ω grows, at most polynomially, with k,
as it is in the case of the Legendre polynomials (see [55] for more examples).
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h3) Element X to be classified has the form:
X = θ̄T V̄K ,, θ̄ = θ̄0 + ε̄, and

X = X0 +Xε, X0 de f
= [θ̄0]T V̄K , Xε

de f
= ε̄T V̄K ,

where ε̄ ∈ R K is a random vector with zero
mean and mutually uncorrelated Gaussian com-
ponents, having variances σ2 > 0.

h4) Available observations xi, i = 1, 2, . . . , m of
X are of the following form:

xi = X(ti) + ζi, i = 1, 2, . . . , m, (24)

where ζi’s are zero mean, finite variance, i.i.d.,
random variables that are not necessarily Gaus-
sian. Observation errors ζi’s are defined on the
same probability space as θ̄ and they are mu-
tually independent. Observation points ti’s are
placed equidistantly in [0, τ] with the distance
∆m = τ/m, assuming t1 = 0.

Assumptions h1)-h4) apply also for historical data
X−n’s. In such cases, index n will attached to xi’s.

Remark 4 It is not difficult to specify classes of
functions X(t), t ∈ [0, τ] and orthonormal systems
for which assumption h2) holds. For example, if
Vk’s form the trigonometric basis and θk’s decay as
k−1, then h2) holds. The required rate k−1 can be
assured if, e.g., X is absolutely continuous.

Remark 5 As is known, see [50, 45, 46], in non-
parametric regression estimation, it is desirable to
observe an estimated function either at ti’s that are
equidistributed in [0, τ] or at the nodes of a highly
accurate quadrature formulas, but it is not always
possible. For this reason, we confine our attention
to the most frequent case of equidistant observa-
tions.

In the problem of learning X, hence also θ̄, from
(24) we assume that θ̄0 is known from historical
data. If drawn according to h3), θ̄ remains un-
changed when observations h4) are acquired. When
a decision concerning X is made, a new pass starts
from drawing the next X. The proposed algorithm
is designed to learn one X from one pass6 of obser-
vations (24) only.

4.1.2 Learning expansion coefficients

When HK ⊂ L2(0, τ), then parameters are given ex-
plicitly as:

θk =
∫ τ

0
X(t)Vk(t)dt, k = 1, 2, . . . , K. (25)

Thus, it is natural to estimate them as follows

θ̂k =
τ
m

m

∑
i=1

xiVk(ti), k = 1, 2, . . . , K. (26)

We shall occasionally write θ̂k(m) when the role of
the number of observations should be underlined,
while a vector of θ̂k’s is denoted as ˆ̄θ or as ˆ̄θ(m).

Corollary 4 (Asymptotic unbiasedness) If X(t)
is Lipschitz continuous in [0, τ] with constant L > 0
and h1)-h4) hold, then for the bias of θ̂k we have

|E ζ[θ̂k]−θk| ≤ Lτ/m, (27)

where E ζ stands for the expectation with respect to
ζi’s, assuming θk’s to be fixed. Hence, θ̂k is asymp-
totically unbiased as m → ∞.

Indeed, E ζ[θ̂k] =
τ
m ∑m

i=1 X(ti)Vk(ti) and the bias is
equal to the error of the Riemann sum quadrature
formula.

Remark 6 It is known that using more sophisti-
cated quadrature formulas in (26) is beneficial [50]
for the estimation accuracy of θ̂k, but for the pur-
poses of on-line novelty detection that is proposed
in the next section, version (26) is preferable. Nev-
ertheless, even for equidistant sampling (26) can be
unbiased when Vk’s is the trigonometric basis (see
Section 5). Also, the proofs of properties of (26) are
more informative.

By h4) and h1), for the variance Var ζ[θ̂k] we obtain

Var ζ[θ̂k] =
τ2

m2

m

∑
i=1

E ζ[xi −X(ti)]2V2
k(ti) = (28)

=
τ2 σ2

m2

m

∑
i=1

V2
k(ti) ≤

τ2 σ2 ω2

m
.

This bound has the exact m−1 order, since for large
m we have (τ/m) ∑m

i=1 V2
k(ti)≈ 1.

5One can allow θ̄ to have a general covariance matrix and to apply de-correlation, described in the previous section. The as-
sumption about normality is made for theoretical purposes only. The algorithm proposed in this section is applicable without this
assumption.

6Learning from pass-to-pass data is also possible, but it is too complicated to be described here.
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4.1.3 MSE bound and consistency

Summarizing, for the mean square error (MSE) of
θ̂k one gets

E ζ[θ̂k−θk]
2 = Var ζ[θ̂k]+ |E ζ[θ̂k]−θk|2 ≤ (29)

≤ τ2 σ2 ω2

m
+

L2 τ2

m2 .

Corollary 5 (MSE upper bound) Under the same
assumptions as in Corollary 4, for X ∈ HK and for

X̂ de f
= ˆ̄θT V̄K we obtain

E ζ||X− X̂||2 = E ζ||θ̄− ˆ̄θ||2K ≤ (30)

≤ K
m

[
τ2 σ2 ω2 +

L2 τ2

m

]
,

where ||.||K is the Euclidean norm in R K.

Notice that if X ∈ L2(0, τ), but X /∈ HK , then – ac-
cording to h2) – one has to add C/K to the right
hand side of (30).

Corollary 6 Under the same assumptions as in
Corollary 5 and selected 0 < α < 1, for every ε > 0
one can find m∗(ε) such that for m≥m∗(ε) we have

Pζ{||X− X̂||> ε} = Pζ{||θ̄− ˆ̄θ||K > ε} ≤ α (31)

and m∗(ε) is given by

m∗(ε)=
√

K
√

τ
√

4αεL2τ2 +Kω4σ4τ5 +Kω2σ2τ3

2αε
.

For the proof, we firstly apply the Markov inequal-
ity to Pζ{||θ̄− ˆ̄θ||K > ε}, which yields

Pζ{||θ̄− ˆ̄θ||K > ε} ≤ ε−1 E ζ||θ̄− ˆ̄θ||K ≤ (32)

≤ τε−1 E ζ||θ̄− ˆ̄θ||2K ,

where the second inequality follows from the
Schwarz inequality. Applying Corollary 5 the last
term in (32) one gets

Pζ{||θ̄− ˆ̄θ||K > ε} ≤ τ3 ε−1 K
m

[
σ2 ω2 +

L2

m

]
.

(33)
Now, it suffices to require that the last term in (33)
is equal to α and to solve the resulting equation for
m to obtain m∗(ε), by selecting the larger of the two
solutions.

This bound is in the spirit of the well-known
(see, e.g., [16, 68]) PAC-learning (probably approx-
imately correct learning), but we shall not follow
this line of research later in this paper.

If X ∈ L2(0, τ), but X /∈ HK , then (30) holds for
the orthogonal projection of X onto HK , further de-
noted as O K(X).

Corollary 7 (MSE consistency)
1) Under assumptions of Corollary 5,

E ζ||X− X̂(m)|| → 0 as m → ∞.

2) If X /∈ HK, then E ζ||O K(X)− X̂(m)|| → 0 as
m → ∞.

It is also well known [55] that if K depends on m
in such a way that K(m) → ∞ and K(m)/m → 0
as m → ∞, then X̂(m) is also MSE consistent for
X /∈ HK .

Remark 7 (MSE convergence rate) Adding
C/K(m) to the right hand side of (30) and op-
timizing the result with respect to K we obtain
MSE convergence rate O(m−1/2), which is at-
tained for c1 m−1/2 ≤ K(m) ≤ c2 m−1/2, where
0 < c1 < c2 < ∞. This rate is slightly slower than
the best possible one, namely, O(m−2/3). This rate
is attainable by X̂(m) for Vk’s being a trigonomet-
ric system of cosine type, even for X /∈ HK, but
assuming X(t) to be periodic, continuously differ-
entiable in [0, τ] with periodic derivative (see [55]
and Section 5 in which discrete cosine transform of
the type II/III is applied, since they have orthogonal
transformation matrices that implies the equality of
integrals and discrete sums of functions from HK).

However, later on we are more interested in the be-
havior of X̂(m) for m finite, although maybe large.

4.1.4 Asymptotic distribution of learning error

It is clear that for Gaussian ζi’s also errors (θ̂k(m)−
θk)’s are normally distributed for any m ≥ 1. If m
is large, one can derive the asymptotic normality of
these errors for an arbitrary distribution of ζi’s, as-
suming only that they are zero mean, finite variance
i.i.d. random variables.

Corollary 8 (Asymptotic normality) Under the
same assumptions as in Corollary 4, for k =
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4.1.3 MSE bound and consistency
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m
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L2 τ2

m2 .
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m

]
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It is also well known [55] that if K depends on m
in such a way that K(m) → ∞ and K(m)/m → 0
as m → ∞, then X̂(m) is also MSE consistent for
X /∈ HK .

Remark 7 (MSE convergence rate) Adding
C/K(m) to the right hand side of (30) and op-
timizing the result with respect to K we obtain
MSE convergence rate O(m−1/2), which is at-
tained for c1 m−1/2 ≤ K(m) ≤ c2 m−1/2, where
0 < c1 < c2 < ∞. This rate is slightly slower than
the best possible one, namely, O(m−2/3). This rate
is attainable by X̂(m) for Vk’s being a trigonomet-
ric system of cosine type, even for X /∈ HK, but
assuming X(t) to be periodic, continuously differ-
entiable in [0, τ] with periodic derivative (see [55]
and Section 5 in which discrete cosine transform of
the type II/III is applied, since they have orthogonal
transformation matrices that implies the equality of
integrals and discrete sums of functions from HK).

However, later on we are more interested in the be-
havior of X̂(m) for m finite, although maybe large.

4.1.4 Asymptotic distribution of learning error

It is clear that for Gaussian ζi’s also errors (θ̂k(m)−
θk)’s are normally distributed for any m ≥ 1. If m
is large, one can derive the asymptotic normality of
these errors for an arbitrary distribution of ζi’s, as-
suming only that they are zero mean, finite variance
i.i.d. random variables.

Corollary 8 (Asymptotic normality) Under the
same assumptions as in Corollary 4, for k =

LEARNING NOVELTY DETECTION OUTSIDE A CLASS . . .

1, 2, . . . , K
√

m
σ
√

τ
[
θ̂k(m)−θk

] d−→ N (0, 1) as m → ∞,

(34)
where d−→ denotes the convergence in distribution
to the standard normal distribution.

For the proof, consider the following expression

Θ̂k(m)
de f
=

θ̂k −E ζ[θ̂k(m)]√
Var ζ[θ̂k(m)]

=
τ
m ∑m

i=1 ζiVk(ti)√
Var ζ[θ̂k(m)]

.

(35)
In order to verify that the Lindenberg condition
(see, e.g., [57]) holds in this case, consider the vari-
ance of one summand in the numerator of (35) to
the overall variance Var ζ[θ̂k(m)] of this sum, which
yields

V2
k(t j)

∑m
i=1 V2

k(ti)
≤ ω2

∑m
i=1 V2

k(ti)
→ 0 as m → ∞. (36)

Thus, also the maximum of this expression w.r.t.
j = 1, 2, . . . , m is convergent to zero, which implies
that the Lindenderg condition hold. Thus, from
the Lindenberg-Feller central limit theorem (CLT)
holds [57] and Θ̂k(m)

d−→ N (0, 1) as m → ∞.
From Corollary 4 we have E ζ[θ̂k(m)→ θk. Notice
that τ

m ∑m
i=1 V2

k(ti) → 1 as m → ∞. Hence, for m
sufficiently large Var ζ[θ̂k] can be approximated by
τσ2/m. Thus, from the Slutsky’s theorem (see, e.g.,
[5]) we know that one can replace the correspond-
ing terms in Θ̂k(m) by θk and τσ2/m, respectively,
still keeping its asymptotic normality.

Corollary 9 (Asymptotic uncorrelatedness)
Under the same assumptions as in Corollary 4,
for k, l = 1, 2, . . . , K, if k ̸= l, then θ̂k(m) and θ̂l(m)
are asymptotically uncorrelated, since

Cov ζ(θ̂k(m), θ̂l(m)) → 0 as m → ∞ (37)

Indeed,

Cov ζ(θ̂k(m), θ̂l(m)) =
τ2

m2

m

∑
i, j=1

E ζ [ζi ζ j] Vk(ti)Vl(t j)

=
σ2 τ
m

τ
m

m

∑
i=1

Vk(ti)Vl(ti) = o(m−1),

because, for k ̸= l, as m → ∞ we have

τ
m

m

∑
i=1

Vk(ti)Vl(ti) →
∫ τ

0
Vk(t)Vl(t)dt = 0.

(38)

From Corollary 8 and 9 we immediately obtain.

Corollary 10 (Asymptotic squared error distribution)
Under the same assumptions as in Corollary 4 we 

have:
1) for χ2

K denoting the standard χ2 distribution with
K degrees of freedom,

m
σ2 τ

K

∑
k=1

[
θ̂k(m)−θk

]2 d−→ χ2
K as m → ∞, (39)

2) for the selected significance level 0 < α < 1 and
q(α) being (1−α) quantile of the above distribu-
tion we asymptotically have

Pζ{|| ˆ̄θ− θ̄||2K > κ} ≤ α, (40)

where κ = q(α)σ2 τ/m, while Pζ is the probability
measure on R K that is induced by ζi,s and condi-
tioned by θ̄.

When σ is estimated from the same observations
as ˆ̄θ, then q(α) should be selected from the T 2

Hotelling distribution.

4.2 Fast algorithm for learning one curve

For fixed K ≥ 1, our starting point is the for-
mula (26) that can be rewritten in the vector form
as follows

ˆ̄θ =
τ
m

m

∑
i=1

xi V̄(ti) =
τ
m
−→
V x̄, (41)

where
−→
V is K × m matrix composed by stacking

columns V̄(ti)’s, while x̄ is m×1 vector of xi’s.

For many linear transformations of the form
(41) there exist fast algorithms for calculating ˆ̄θ
in O(mlog(m) operations, the most notable being
the fast Fourier transform (see [47] for the FFT
algorithm used in nonparametric regression func-
tion estimation). For our purposes we choose Vk’s
forming the cosine series and its discrete counter-
part, known as the discrete cosine transform (DCT),
since it has the fast implementation. Advantages of
the DCT made it the most popular algorithm in au-
dio, video and image processing (see, e.g., [7]). In
our computational tests the so-called type II DCT
(or DCT-II) was used (see [44] for recent contribu-
tion and the bibliography cited therein), since it is
even with respect to zero and the inverse of DCT-II
is the same as DCT-III, up to a scaling factor.
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The following algorithm provides the estimates:
ˆ̄θ and

x̂i
de f
= X̂(ti) = ˆ̄θT V̄(ti), i = 1, 2, . . . , m. (42)

Algorithm 2

Input:K, m, K < m, τ and {xi}, considered as
the whole sequence x̄ = [xi, i = 1, 2, . . . , m].

Step 1 Calculate m×1 vector ˜̄θ, say, from {xi},
using the fast version of DCT-II.

Step 2 Select K first elements of ˜̄θ and form ˆ̄θ
from them.

Step 3 Set to zero elements indexed as (K +

1), (K+2), . . . ,m of ˜̄θ and feed this vector as the
input of the inverse of DCT-II algorithm. The
output of the inverse of DCT-II algorithm is {x̂i}
sequence.

Output: ˆ̄θ and {x̂i} sequence.

The action of Algorithm 2 on {xi} is further denoted
as [ ˆ̄θ, {x̂i}] = A({xi}, K), omitting τ, m arguments
for brevity. Algorithm 2 plays a crucial role in clas-
sifying current X, since it provides the estimate ˆ̄θ of
feature vector θ̂. Its role in the learning path from
historical data is different, namely, it provides θ̄−n’s
for learning de-correlation matrix (see Fig. 1). The
second ingredient of the output of Algorithm 2 is
{x̂i} that can be used for the selection of K, if it
is not a priori specified. To this end, one can use
Akaike’s information criterion, the Bayesian infor-
mation criterion and others. We also refer the reader
to [33] and [72] and the bibliographies cited therein
for methods of data driven selection of K, in the re-
lated problems of hypothesis testing when smooth
alternatives are specified by orthogonal expansions.

Notice, however, that in our case we have to
select K which is suitable for the whole family of
functions from the class "0". This topic is outside
the scope of this paper.

5 Aggregated learning algorithm

Algorithms 1 and 2 are designed in such a way
that they may (and in some cases) should be used
together. In this section, we outline an aggregated

algorithm (Algorithm 4) of their cooperation. Al-
ready at the beginning, we turn the reader attention
that Algorithm 2 may appear at different steps of the
aggregated algorithm. On the other hand, in some
cases, as described in the next subsection, it suffices
to use Algorithm 2 only once.

5.1 Uncorrelated descriptors

If descriptors θk, k = 1, 2, . . . , m are uncorre-
lated, it suffices to apply Algorithm 2 for deciding
whether each new X is typical or not.

Algorithm 3

Input: K, m, K < m, τ, θ̄0 (or ˆ̄θ0, if it results
from learning that is based on historical data).
Establish the threshold ρ > 0 (see a discussion
below).

Step 1 Acquire observations {xi} of X, consid-
ered as the whole sequence xi, i = 1, 2, . . . , m.

Step 3 Execute Algorithm 2 in order to obtain:
[ ˆ̄θ, {x̂i}] = A({xi}, K).

Step 4 If || ˆ̄θ− θ̄0||2K > ρ, declare ˆ̄θ (hence, also
X) to be a novelty. Otherwise, classify them to
the class "0" and go to Step 1.

Data {x̂i} obtained Step 3 might be useful in ex-
ploring the reasons why curve X at hand was de-
clared to be a novelty. One may also consider
m−1 ∑m

i=1[X0(ti)− x̂i]
2 as an alternative criterion for

novelty detection, but this topic is outside the scope
of this paper.

It remains to point out how to select ρ. To this
end, it suffices to collect facts already established.

The difference ˆ̄θ− θ̄0 has two random compo-
nents that induce two kinds of variability, namely,

1. ˆ̄θ− θ̄ – variability introduced by random errors
in xi’s.

2. θ̄− θ̄0 – variability that is inherent for X coming
from the class "0".

Concerning case 1., we know that the bias of ˆ̄θ is
zero, if DCT-II orthogonal sequence is used, since
then

∫ τ
0 Vk(t)Vl(t)dt = 0 for k ̸= l and simultane-

ously τ
m ∑m

i=1Vk(ti)Vl(ti) = 0. For other basis we
known from Corollary 4 that |E ζ[θ̂k]−θk|2 is of the
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The following algorithm provides the estimates:
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ready at the beginning, we turn the reader attention
that Algorithm 2 may appear at different steps of the
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cases, as described in the next subsection, it suffices
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Input: K, m, K < m, τ, θ̄0 (or ˆ̄θ0, if it results
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[ ˆ̄θ, {x̂i}] = A({xi}, K).

Step 4 If || ˆ̄θ− θ̄0||2K > ρ, declare ˆ̄θ (hence, also
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Data {x̂i} obtained Step 3 might be useful in ex-
ploring the reasons why curve X at hand was de-
clared to be a novelty. One may also consider
m−1 ∑m

i=1[X0(ti)− x̂i]
2 as an alternative criterion for

novelty detection, but this topic is outside the scope
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It remains to point out how to select ρ. To this
end, it suffices to collect facts already established.

The difference ˆ̄θ− θ̄0 has two random compo-
nents that induce two kinds of variability, namely,

1. ˆ̄θ− θ̄ – variability introduced by random errors
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2. θ̄− θ̄0 – variability that is inherent for X coming
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Concerning case 1., we know that the bias of ˆ̄θ is
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order o(m−1) and it can be neglected. From Corol-
lary 5 we also know that the variance term of ˆ̄θ− θ̄
is of the order K/m and it can be made arbitrar-
ily small by selecting m sufficiently large, both for
K = nst and for K(m)/m → 0. Thus, we can omit
the variability described in case 1.

The second source of variability is crucial for
selecting ρ > 0, since it cannot be reduced. When
θ̄ − θ̄0 is the main source of variability and θ̄ is
Gaussian with uncorrelated components, then we
already have the rule of selecting ρ, namely, apply
Corollary 2.

When θ̄ has an unknown distribution, then the
proposed way of selecting varrho is based on his-
torical observations X−n that are transformed to
ˆ̄θ−n, n = 1, 2, . . . , NH by Algorithm 2. It has the
following form:

ρ = max
n=1,2, ...,NH

||θ̄0 − ˆ̄θ−n||2 −δ, (43)

where δ ≥ 0 is a tuning parameter. By setting δ = 0
we decide to include all the learning examples to
the class "0", according to their formal definition.
However, if one has doubts whether examples hav-
ing relatively large values of ||θ̄0− ˆ̄θ−n||2 should in-
deed be included, then one can select δ > 0 in such
a way that a prescribed fraction α > 0 of them is
excluded from further computations.

Algorithm 3 includes the main path of decision
making that is depicted in Figure 1. It consists of
blocks labelled as E) and F) in this figure. For un-
correlated descriptors, block D is not executed. Its
role is described in the next subsection.

5.2 Correlated descriptors

When components of θ̄ are correlated, then we
have two cases:

– Σ is known e.g., from a mathematical model or
from a very large number of historical data, then
apply Remark 2, i.e., use (15) as a measure of
departure between θ̄ and θ̄0 and – if data are
Gaussian – read out threshold ρ from χ2 dis-
tribution with K degrees of freedom. For non-
Gaussian data establish ρ as in (19), replacing
ϕ̂(θ̄n) by ϕ(θ̄n).

– Σ is unknown but empirical covariance matrix Σ̂
can be obtained by learning from historical data

of a small or moderate length. In this case we
have to appropriately combine Algorithms 1, 2
and 3, as it is explained in this subsection (see
also Figure 1.

Meta-algorithm (for correlated descriptors)

Stage I Apply the Learning phase of Algorithm
1, using Algorithm 2 in its Step 2.

Stage II Apply Algorithm 3, replacing the condi-
tion || ˆ̄θ− θ̄0||2K > ρ in its Step 4 by the following
one: ϕ̂(θ̄)> ρ.

Figure 1. Flow chart of learning and decision
making when descriptors are correlated. A) data

base of historical curves or surrogate data, B)
extraction of curves’ coefficients (apply Algorithm

2 when observations are noisy), C) Learning ˆ̄θ0

(also X̂0) and Σ̂−1 – Algorithm 1, D) Compute
decision function ϕ̂, E) Learning current ˆ̄θ

(Algorithm 2), F) Classifying current ˆ̄θ. {xi}m
i=1

stands for the acquisition of observations from a
new curve to be classified.

Observe that the learning stage (Stage I, see also
blocks A), B), C) in Figure 1) is executed only once
on historical or surrogate data. One may also con-
sider a version of the Meta-algorithm with learning
permanently, also from currently incoming curves,
if we are convinced that they are correctly classi-
fied, but this is outside the scope of this paper.
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On the other hand, its vertical branch (blocks
E), D), F)) is executed each time when a new curve
is to be classified. Arrows in Figure 1 are marked
as white, if they transmit a curve as a whole, while
black arrows convey data of the vector type. Thin
arrows serve to pass decisions between blocks.

6 Testing on synthetic curves

In this section, our methodology of testing the
algorithms and summary of the results are provided.
Their aim is not only to test the algorithms, but also
to check their robustness against assumption viola-
tion. In particular, the robustness of the choice of
threshold ρ is of special importance. We start from
the case when the components of θ̄ are uncorrelated
and then modifications that are necessary to cover
also more general case are described.

6.1 Testing – uncorrelated descriptors case

Before running the testing procedure, we have
to select several important ingredients, namely,

1. K – the number of descriptors (dimension of θ̄),
describing curves from the class "0",

2. the orthonormal basis spanning curves (here, the
cosine series),

3. τ – the observation horizon and m > K – the
number of equidistant samples in [0, τ],

4. 0 < α < 1 – the significance level – an admissi-
ble level of rejecting a member of the class "0",

5. ρ > 0 – the decision threshold, initially read out
as (1−α) quantile of χ2 distribution with K de-
grees of freedom and possibly later corrected,

6. θ̄0 – K ×1 vector – a center of the class "0" and
a probability distribution of ε̄ ∈ R K with zero
mean, uncorrelated components and variances
σ2

k > 0, k = 1, 2, . . . , K that specify

θ̄ = θ̄0 + ε̄, (44)

i.e., coefficients of curves belonging to the class
"0",

7. select a probability distribution of random errors
ζi’s in

xi = X(ti) + ζi, i = 1, 2, . . . , m, (45)

according to Assumption h4), where X is a curve
with coefficients generated according to (44),

8. choose NT > 1 as the number of repetitions of
simulations.

Simulation process I

a) Set: simulation number ns = 1 and the num-
ber of improper classifications nimp = 0. Prepare
two m×1 vectors for intermediate data.

b) Generate θ̄ according to (44) and extend it to
m × 1 vector by padding m − K zeros after θ̄.
Store the result in θ̄ext vector.

c) Generate X(ti)’s by applying the inverse of the
fast DCT to θ̄ext vector and use the resulting se-
quence in (45) to simulate observations xi, i =
1, 2, . . . , m and store them as x̄sym.

d) Feed x̄sym as the input of Algorithm 2 and com-
pare its output ˆ̄θ with θ̄0, by checking the condi-
tion:

|| ˆ̄θ− θ̄0||2 > ρ. (46)

If this condition holds, set nimp = nimp + 1 and
go to e). Otherwise, go directly to e).

e) If ns < NT , set ns = ns+1 and go to b). Other-
wise, STOP – provide nimp as the output.

Several remarks are in order concerning the above
simulation methodology.

1. If nimp/NT is essentially larger than α, consider
the reduction of ρ and repeat the Simulation pro-
cess I.

2. If nimp/NT is much smaller than α, increase ρ
slightly and repeat the Simulation process I.

3. To asses the robustness of the classifier, run the
whole Simulation process I many times, chang-
ing the variances σ2

k’s, ζi’s, the number of sam-
ples m etc.

4. For diagnostic and illustrative purposes, it may
be useful to store the sequences x̂i’s that are gen-
erated as the second output of Algorithm 2.

5. Choose NT relatively large (e.g., 103 or even
104), since the experience gained so far (see
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On the other hand, its vertical branch (blocks
E), D), F)) is executed each time when a new curve
is to be classified. Arrows in Figure 1 are marked
as white, if they transmit a curve as a whole, while
black arrows convey data of the vector type. Thin
arrows serve to pass decisions between blocks.
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a probability distribution of ε̄ ∈ R K with zero
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σ2
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[33], [48]) indicates that it is necessary for re-
ducing a large variability of results when simu-
lation experiments are used for testing methods
that are based on thresholding.

6. In order to check discriminative abilities of the
classifier, run again (many times) the Simulation
process I, but this with the curves that are "far"
from the class "0". For example, select a "false"
θ̄0, which is far from the original one. This time,
interpret the result in nimp as correct decisions.

6.2 Testing – correlated descriptors

Testing for correlated descriptors goes along similar
lines as above with several changes only. The main
one is in the presence of the correlation learning
phase that is organized as follows.

Simulating the correlation learning phase

Simulating historical data Select K ×K non-
singular matrix B and use it for generating de-
scriptors7as follows for n = −1,−2, . . . ,−NH

θ̄n = θ̄0 + B ε̄n + ς̄n, (47)

where ε̄n’s are zero mean random vectors with
the unit covariance matrix. The third summand
in (47) is K × 1 random vector with zero mean
and uncorrelated components. These compo-
nents have the same variances that are equal to
the right hand side of (28). Their role is to ap-
proximately8 incorporate errors introduced by
observations corrupted by ζi’s into the simula-
tion process.

Simulated learning of Σ Denote by Σ̂(n) an es-
timate of Σ obtained from n historical observa-
tions. Set Σ̂(0) to be K ×K matrix of zeros. For
n = 1, 2, . . . , NH run learning as follows

Σ̂(n) = νn Σ̂(n−1)+
1
n
(θ̄−n − θ̄0)(θ̄−n − θ̄0)T ,

(48)
where νn

de f
= n−1

n .

Checking Set Σ̂ = Σ̂(NH) and check non-
singularity9of this matrix. If not, increase NH

in (47). For diagnostic purposes one may verify
how far is Σ̂ from BBT , e.g., in the Frobenius
norm.

Forming a decision function ϕ̂ Compute the in-
verse of Σ̂ and prepare

ϕ̂(θ̄) = (θ̄− θ̄0)T Σ̂−1 (θ̄− θ̄0). (49)

In (48) and in (49) one may use ˆ̄θ0 estimated from
historical data, but then one has to reduce the num-
ber of degrees of freedom when establishing the dis-
tribution of ϕ̂(θ̄).

Simulation process II

After finishing the above learning phase, one
can run simulations aiming at testing the Meta-
algorithm for its ability to correctly classify newly
incoming θ̄’s (see also path: E), D), F) in Fig. 1).
To this end it suffices to run the Simulation process
I with the following changes.

1. Replace Step b) by:
Generate θ̄ = θ̄0+B ε̄ and extend it to m×1 vec-
tor by padding m−K zeros after θ̄. Store the
result in θ̄ext vector.

2. In Step d) replace condition (46) by ϕ̂(θ̄) > ρ,
where ϕ̂(θ̄) is as defined in (49).

The results of testing are summarized in the next
subsection.

6.3 Summary of the test results

Firstly, the testing of synthetic, uncorrelated
data was performed. The simulation parameters are
presented in Table 1.

Firstly, the synthetic curves based on
√

t were
created. The results for different amounts of distur-
bance in θ are presented in Figure 2. Clearly, the
results are correct (close to 0) until a certain level
of disturbance is achieved. Only then the number
of wrong classifications – both tested curves belong
to the same class – increases. At this point the dis-
turbed curve is very different then.

7When variability of descriptors is generated as in (47), we know that the covariance matrix of θ̄n’s is Σ = BBT , but we shall
behave like a person with a split personality, i.e., B is given for generating data, but later we forget it and consider Σ as unknown.

8Simulations of exact errors would be computationally demanding. To this end, one has to repeat steps c) and d) in the Simula-
tion process I for each θ̄0 +B ε̄n, n = −1,−2, . . . ,−NH .

9It is desirable to perform this checking by verifying whether the smallest eigenvalue of Σ̂ is sufficiently larger than zero.
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Table 1. Parameters for numerical tests

K 16
τ 1.
m 32
α 0.05
Nt 1000
σ2

k 0.58
Var ζ 0.8

Figure 2. Uncorrelated descriptors, simulation
process

When correlated descriptors are used, we
can not visualise the change of B easily.
Therefore, in Figure 3, on the horizontal
axis, we can see the variance of ζ instead.

Figure 3. Correlated descriptors, simulation
process

Similarly we can check how the algorithm can
discriminate between two similar curves. First of
them is already used

√
t, t ∈ [0,1]. (50)

As a second one, the

1+ log10 t, t ∈ [0,1], (51)

was used. The comparison can be seen in Figure 4.

Figure 4. The comparison of valuse of function
√

t
and 1+ log t

Obviously, when comparing dissimilar curves,
the correct result would be the high number of
counts in nimp.

Figure 5. Uncorrelated descriptors, simulation
process

Indeed that happens. In both cases (corre-
lated, see Figure 6 and uncorrelated in Figure 5)
we can clearly see that, when randomness is added,
the number of correct classifications drops slightly
(note scale on the vertical axis). Afterward, when
the amount of disturbance is very high, the two
curves are dissimilar enough to be classified as dif-
ferent.
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Figure 6. Correlated descriptors, simulation
process

Overall, we can say that on the synthetic data
the proposed algorithm works correctly.

7 Case study - COVID-19 growth
rates

The COVID-19 is a global pandemic that nearly
instantly changed the world. Its occurrence has also
become a focus for many researchers trying to anal-
yse and/or predict how the pandemic would unfold.
General research had centered on predictions and
how the current mitigation strategy would work like
in [6].

In this section, we would like to use the nov-
elty detection algorithm to investigate whether two
so called waves of COVID are similar or different.
Distinguish those spikes in COVID activity can help
in deciding if a new mutation is present in consid-
erable numbers and in assessing current mitigation
strategy.

As a base data the number of COVID-19 cases
in Croatia from January 1st 2020 to September 29th
2020 was chosen. The data were retrieved from
ECDC COVID-19 dataset [19].

In Figure 7 the data in a relevant time period are
shown. The first of the horizontal lines delimits the
first wave of infections. The extent was determined
by looking at the data. The dates in the said figure
are for the beginning and the end of this observa-
tions. We can also distinguish the second possible
wave and those observations are marked with sec-
ond line and also annotated with relevant dates.

Figure 7. Data for COVID 19 cases in Croatia.
Black lines indicates where samples were taken.

The dates corresponds to the beginning and to the
end of each sample respectively.

Even if we can see the shape as similar, the val-
ues are different. Since we are looking for similar-
ities in shape, they have to be normalized to [0,1].
The result for those observation groups is presented
in Figure 8.

Figure 8. Normalized data in two stretches of time

The Algorithm was executed as in Section 5.1
using the first m = 10 terms. In order to verify the
initial assessment of the second sample, the moving
window was used. As a result, we obtain Figure 9.
We can clearly see that the proposed second wave
is where we have initially estimated. Please note
that the smaller value around 70 is due to using the
first wave as a reference and, obviously the data fits
itself much better.

In this figure we can also see some other local
minima. This had shown that we can use the pro-
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posed algorithm also to find similarities in the data
as well as to verify them.

Figure 9. Results for moving windows

8 Concluding remarks

The aggregated learning algorithm for one-class
classification of functional data, having the form of
repetitively occurring random curves, has been pro-
posed. It gathers off-line learning of the covariance
matrix of curves’ descriptors and pass-to-pass, on-
line learning of descriptors of a current curve to be
classified. The bounds for the probability of errors
of the both learning processes have been derived.
The descriptors are projections of a curve onto a
finite dimensional subset of a selected orthogonal
set of functions. Up to implementation details, the
derivations are kept at the level of finite dimensional
subsets of a Hilbert space and – therefore – can be
formally generalized to, e.g., surfaces in two dimen-
sions.

At the implementation level, curves can be pro-
vided as functions or represented as SRV, which is
shape sensitive. A fast version of the on-line branch
of the method is proposed using the fast version of
the discrete cosine transform.

References
[1] C. Abraham, G. Biau, and B. Cadre, On the kernel

rule for function classification, Annals of the Institute
of Statistical Mathematics, 58(May 2005): 619–633,
2006.

[2] TW. Anderson, The Statistical Analysis of Time Se-
ries, Wiley Online Library, 1971.

[3] G. Aneiros, E. Bongiorno, R. Cao, P. Vieu, et al,

Functional statistics and related fields. Springer,
Cham 2017.

[4] G. Biau, F. Bunea, and M. Wegkamp, Functional
classification in hilbert spaces. IEEE Transactions on
Information Theory, 51(6): 2163–2172, 2005.

[5] P. Bickel and K. Doksum, Mathematical statistics:
basic ideas and selected topics, volume I, volume 117.
CRC Press,Boca Raton 2015.

[6] W. Bock, B. Adamik, M. Bawiec, V. Bezborodov,
M. Bodych, J. Burgard, T. Goetz, T. Krueger,
A. Migalska, B.a Pabjan, T. Ożański, E. Rafa-
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