Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we investigate some Riesz space (vector lattice) properties of the space of real statistically convergent sequences. We prove that this space is an order dense Riesz subspace of the linear space of all real sequences, but it is not an ideal.
Wydawca
Czasopismo
Rocznik
Tom
Strony
31--39
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics, Graduate School of Applied and Natural Sciences, Süleyman Demirel University, East Campus 32260 Isparta, Turkey
autor
- Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, East Campus 32260 Isparta, Turkey
Bibliografia
- [1] C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, American Mathematical Society, Providence, 2003.
- [2] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
- [3] J. S. Connor, Some applications of functional analysis to summability theory, Ph.D. thesis, Kent State University, 1985.
- [4] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63.
- [5] J. Connor, M. Ganichev and V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl. 244 (2000), 251-261.
- [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [7] H. Freudenthal, Teilweise geordnete Modulen, Proc. Acad. Amsterdam 39 (1936), 641-651.
- [8] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- [9] L. V. Kantorovich, Lineare halbgeordnete Räume, Recueil Math. 2 (1937), 121-168.
- [10] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu. Math. 928 (1991), 41-52.
- [11] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), 141-145.
- [12] G. Di Maio and L. D. R. Kocinac, Statistical convergence in topology, Topology Appl. 156 (2008), 28-45.
- [13] M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems, J. Math. Anal. Appl. 256 (2001), 686-693.
- [14] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley & Sons, New York, 1991.
- [15] F. Nuray and E. Savas, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca 45 (1995), 269-273.
- [16] F Riesz, Sur la décomposition des opérations linéaires, Proc. Internat. Congr. Math. (Bologna) 3 (1928), 143-148.
- [17] T. Salât, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- [18] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
- [19] B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malays. Math. Sci. Soc. (2) 20 (1997), 31-33.
- [20] B. C. Tripathy, On statistically convergent sequences, Bull. Calcutta Math. Soc. 90 (1998), 259-262.
- [21] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3f0f120-6da1-4206-afaf-0fcf13289415