PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of High-Resolution Mechanical Spectroscopy, HRMS: Status and Perspectives. HRMS Coupled with a Laser Dilatometer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Powstanie i rozwój wysokorozdzielczej spektroskopii mechanicznej HRMS - stan obecny i perspektywy. hrms sprzężony z dylatometrem laserowym
Języki publikacji
EN
Abstrakty
EN
Recent achievements in the development of low-frequency high-resolution mechanical spectroscopy (HRMS) are briefly reported. It is demonstrated that extremely low values of the loss angle, ϕ, (tanϕb = 1×10−5) can be measured as a function of frequency, and the precision in estimation of the dynamic modulus is better than 1×10−5 in arbitrary units. Three conditions must be fulfilled to obtain high resolution in subresonant and resonant mechanical loss measurements: (1) noise in stress and elastic strain signals must be lower than 70 dB, (2) high quality of stress and strain signals must be tested both in the frequency- and time-domains, and (3) the estimation of the mechanical loss and modulus must be verified by at least two different computing methods operating in the frequency- and time-domains. It is concluded that phase measurements in the subresonant domain are no longer determined by precision in estimation of the loss angle. Recent developments in high-resolution resonant mechanical loss measurements stem from the application of advanced nonparametric and parametric computing methods and algorithms to estimate the logarithmic decrement and the elastic modulus from exponentially damped free decaying oscillations embedded in experimental noise. It is emphasized that HRMS takes into account the presence of noise in the stress and strain signals, which has not yet been addressed in the literature. The coupling of a low-frequency mechanical spectrometer with an in-situ laser dilatometer is suggested as a new perspective research area in Materials Science.
PL
W pracy przedstawiono najnowsze osiągnięcia związane z powstaniem i rozwojem niskoczęstotliwościowej wysokorozdzielczej spektroskopii mechanicznej, HRMS. Wykazano, że możliwym jest pomiar skrajnie niskich wartości kąta strat ϕ, (tanϕb = 1×10−5) mierzonych w funkcji częstotliwości, zaś dokładność pomiaru dynamicznego modułu sprężystości jest lepsza niż 1×10−5, w jednostkach względnych. Do uzyskania wysokiej rozdzielczości w zakresie subrezonansowej i rezonansowej spektroskopii mechanicznej koniecznym jest spełnienie trzech warunków: (1) szum w sygnałach naprężeń i odkształceń sprężystych musi być bardzo niski, tzn. poniżej poziomu 70 dB, (2) sygnały naprężeń i odkształceń sprężystych muszą być wysokiej jakości i muszą przejść stosowne testy zarówno w dziedzinie częstotliwości, jak i czasu, (3) obliczone wartości strat mechanicznych i modułu sprężystości muszą być zweryfikowane przez co najmniej dwie różne metody obliczeń prowadzone w dziedzinie częstotliwości i czasu. Jednym z najważniejszych wniosków jest stwierdzenie, że pomiary różnic w fazie pomiędzy sygnałami naprężenia i odkształcenia sprężystego w zakresie subrezonansowym, nie są zdeterminowane, jak dotychczas twierdzono, przez ograniczenia w dokładności obliczeń kąta strat. Najnowsze osiągnięcia uzyskane w rozwoju wysokorozdzielczej rezonansowej spektroskopii mechanicznej wynikają z zastosowania nowych zaawansowanych nieparametrycznych i parametrycznych metod obliczeń i algorytmów do estymacji logarytmicznego dekrementu tłumienia oraz modułu sprężystości z wykładniczo tłumionych swobodnie zanikających oscylacji zawierających szum eksperymentalny. W pracy podkreślono, że wysokorozdzielcza spektroskopia mechaniczna HRMS uwzględnia obecność szumu w sygnałach naprężeń i odkształceń, która dotychczas nie była brana pod uwagę w literaturze światowej. Wykazano również, że połączenie niskoczęstotliwościowego spektrometru mechanicznego z in-situ dylatometrem laserowym w jednym urządzeniu badawczym otwiera nowe możliwości poznawcze w zakresie inżynierii materiałowej.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] L. B. Magalas, M. Majewski, Toward high-resolution mechanical spectroscopy HRMS. Logarithmic decrement, Sol. St. Phen. 184, 467-472 (2012).
  • [2] L. B. Magalas, M. Majewski, Toward high-resolution mechanical spectroscopy HRMS. Resonant frequency – Young’s modulus, Sol. St. Phen. 184, 473-478 (2012).
  • [3] M. Majewski, A. Piłat, L. B. Magalas, Advances in computational high-resolution mechanical spectroscopy HRMS. Part 1 – Logarithmic decrement, IOP Conf. Series: Materials Science and Engineering 31, 012018 (2012).
  • [4] M. Majewski, L. B. Magalas, Advances in computational high-resolution mechanical spectroscopy HRMS. Part 2 – Resonant frequency – Young’s modulus, IOP Conf. Series: Materials Science and Engineering 31, 012019 (2012).
  • [5] L. B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St. Phen. 115, 7-14 (2006).
  • [6] L. B. Magalas, A. Stanisławczyk, Advanced techniques for determining high and extreme high damping: OMI – A new algorithm to compute the logarithmic decrement, Key Eng. Materials 319, 231-240 (2006).
  • [7] L. B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137, 15-20 (2008).
  • [8] L. B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522, 384-388 (2009).
  • [9] L. B. Magalas, M. Majewski, Hilbert-twin - A novel Hilbert transform-based method to compute envelope of free decaying oscillations embedded in noise, and the logarithmic decrement in high-resolution mechanical spectroscopy HRMS, Arch. Metall. Mater. 60, 1091-1098 (2015).
  • [10] J. Woirgard, Y. Sarrazin, H. Chaumet, Apparatus for the measurement of internal friction as a function of frequency between 10−5 and 10 Hz, Rev. Sci. Instrum. 48, 1322-1325 (1977).
  • [11] S. Etienne, J. Y. Cavaille, J. Perez, M. Salvia, Automatic system for micromechanical properties analysis, J. de Phys. 42 (C5), 1129-1134 (1981).
  • [12] G. D’Anna, W. Benoit, Apparatus for dynamic and static measurements of mechanical properties of solids and of flux-lattice in type-II superconductors at low frequency (10-5-10 Hz) and temperature (4.7-500 K), Rev. Sci. Instrum. 61, 3821-3826 (1990).
  • [13] T. T. Gribb, R. F. Cooper, A high-temperature torsion apparatus for the high-resolution characterization of internal friction and creep in refractory metals and ceramics: Application to the seismic-frequency, dynamic response of Earth’s upper mantle, Rev. Sci. Instrum. 61, 559-564 (1998).
  • [14] J. P. Shui, H. Y. Pei, Y. S. Liu, Relationship between the internal friction values of the specimen and the vibration system, Rev. Sci. Instrum. 70, 2060-2064 (1999).
  • [15] Y. Z. Wang, X. D. Ding, X. M. Xiong, J. X. Zhang, Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration, Rev. Sci. Instrum. 78, 103907 (2007).
  • [16] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, 1972.
  • [17] R. de Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland Publishing Company, 1972.
  • [18] X. F. Zhu, J. P. Shui, J. S. Williams, Precise linear internal friction expression for a freely decaying vibrational system, Rev. Sci. Instrum. 68, 3116-3119 (1997).
  • [19] M. S. Blanter, L. B. Magalas, Strain-induced interaction of dissolved atoms and mechanical relaxation in solid solutions. A review, Sol. St. Phen. 89, 115-139 (2003).
  • [20] M. S. Blanter, I. S. Golovin, H. Neuhaëuser, H. -R. Sinning, Internal Friction in Metallic Materials. A Handbook, Berlin, Springer Verlag (2007).
  • [21] G. Gremaud, Dislocation-point defect interactions, Materials Science Forum 366-368, 178-246 (2001).
  • [22] J. Hoyos, A. Ghilarducci, H. Salva, J. Vélez, Evolution of martensitic microstructure of carbon steel tempered at low temperatures, Procedia Materials Science 1, 185-190 (2012).
  • [23] J. J. Hoyos, A. A. Ghilarducci, H. R. Salva, J. M. Vélez, Anelastic effects on martensitic carbon steel, Sol. St. Phen. 184, 221-226 (2012).
  • [24] R. W. Ramirez, The FFT Fundamentals and Concepts, Prentice-Hall, 1985.
  • [25] J. S. Bendat, A. G. Piersol, Analysis and Measurement Procedures, Wiley-Interscience 1986.
  • [26] E. Oran Brigham, The Fast Fourier Transform and its Applications, Prentice Hall 1988.
  • [27] A. D. Poularikas (ed.), The Transforms and Applications. Handbook, CRC Press Inc. 1996.
  • [28] S. Qian, D. Chen, Joint Time-Frequency Analysis. Methods and Applications, Prentice Hall PTR 1996.
  • [29] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14, 1201-1206 1981.
  • [30] G. X. Liu, S. Rumyantsev, M. S. Shur, A. A. Balandin, Origin of 1/f noise in graphene multilayers: Surface vs. volume, Appl. Phys. Letters 102, 093111 (2013).
  • [31] L. B. Magalas, M. Majewski, Free Decay Master Software Package, (2014).
  • [32] D. J. Tweten, Z. Ballard, B. P. Mann, Minimizing error in the logarithmic decrement method through uncertainty propagation, J. Sound and Vibration 333, 2804-2811 (2014).
  • [33] L. B. Magalas, On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the Cold Work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek-Kê-Köster (SKK) peak. Dedicated to the memory of Professor Ting-Sui Kê, Acta Metallurgica Sinica 39, 1145-1152 (2003).
  • [34] G. Klems, R. Miner, F. Hultgren, R. Gibala, Internal friction in ferrous martensites, Metall. Mater. Trans. A 7, 839-849 (1976).
  • [35] R. Bagramov, D. Mari, W. Benoit, Internal friction in a martensitic high-carbon steel, Philos. Mag. A 81, 2797-2808 (2001).
  • [36] I. Tkalcec, D. Mari, W. Benoit, Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel, Mater. Sci. Eng. A 442, 471-475 (2006).
  • [37] R. Martin, I. Tkalcec, D. Mari, R. Schaller, Tempering effects on three martensitic carbon steels studied by mechanical spectroscopy, Philos. Mag. 88, 2907-2920 (2008).
  • [38] V. G. Gavriljuk, W. Theisen, V. V. Sirosh, E. V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, Ye.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Mater. 61, 1705-1715 (2013).
  • [39] X. W. Lu, M. J. Jin, H. S. Zhao, W. Li, X. J. Jin, Origin of low-temperature shoulder internal friction peak of Snoek-Köster peak in a medium carbon high alloyed steel, Solid State Commun. 195, 31-34 (2014).
  • [40] J. Van Humbeeck, The martensitic transformation, Materials Science Forum 366-368, 382-415 (2001).
  • [41] J. San Juan, M. L. Nó, Damping behavior during martensitic transformation in shape memory alloys, J. Alloy Compd. 355, 65-71 (2003).
  • [42] V. Dutz, V. Gavriljuk, Ju. Jagodzinky, J. Pietikäinen, O. Söderberg, K. Ullakko, Internal friction in the alloyed Fe-C martensites, Materials Science Forum 56-58, 181-184 (1990).
  • [43] C. A. V. de A. Rodrigues, C. Prioul, Correlation between expansivity and internal friction during the martensitic transformation in Fe-Ni and Fe-Ni-C alloys, Proc. of the Int. Conf. on Martensitic Transformations, The Japan Institute of Metals, 447-452 (1986).
  • [44] Y. Shi, W. B. Jiang, Q. P. Kong, P. Cui, Q. F. Fang, M. Winning, Basic mechanism of grain-boundary internal friction revealed by a coupling model, Physical Rev. B 73, 174101 (2006).
  • [45] W. B. Jiang, Q. P. Kong, P. Cui, Further evidence of grain boundary internal friction in bicrystals, Mater. Sci. Eng. A 527, 6028-2032 (2010).
  • [46] W. B. Jiang, Q. P. Kong, P. Cui, Q. F. Fang, D. A. Molodov, G. Gottstein, Internal friction in Al bicrystals with <111> tilt and twist grain boundaries, Phil. Mag. 90, 753-764 (2010).
  • [47] W. Benoit, Grain boundary relaxation in metals, Materials Science Forum 366-368, 306-314 (2001).
  • [48] R. Schaller, A. Lakki, Grain boundary relaxations in ceramics, Materials Science Forum 366-368, 315-337 (2001).
Uwagi
EN
This work was supported by the National Science Centre (NCN) in Poland under grant No. N N507 249040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3f0dfbd-03a5-484f-8572-785d56c38687
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.