PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weld joint properties of nitrogen-alloyed austenitic stainless steel using multi-pass GMA welding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The welding of nitrogen (0.29 wt%)-alloyed austenitic steel (grade 23-8-N) was performed with gas metal arc welding process. Solution treatment was performed at 950 °C and 1150 °C on base metal prior to weld. Base metal after second treatment has maximum ultimate tensile strength of 942 MPa and impact toughness 66 J. The microstructures of different zones of the weld joint were characterized using an optical microscope and field scanning electron microscope (FESEM). The microhardness, tensile and impact toughness tests of the weldments were conducted along with weld ferrite evaluation. ER2209 duplex filler metal used for welding has lower C and N content which changed the weld solidification mode. Weld has microstructure containing austenite + ferrite. Being a strong austenite former, nitrogen caused minimum ferrite near weld–HAZ interface while maximum ferrite content was observed at weld centre. Weld metal has minimum while base metal has maximum microhardness. UTS (892 MPa) and impact strength (96 J) of weld made on 1150 °C solution-treated base metal were maximum as compared to other weld joints.
Rocznik
Strony
266--278
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Mechanical and Industrial Engineering Department, Indian Institute of Technology, Roorkee, Roorkee, India
  • Mechanical and Industrial Engineering Department, Indian Institute of Technology, Roorkee, Roorkee, India
autor
  • Star Wire (India) Ltd, Faridabad, India
Bibliografia
  • [1] Zhao L, Tian ZL, Peng Y. Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel. Sci Techno Weld Join. 2009;14:87–92. https ://doi.org/10.1179/13621 7108X34393 9.
  • [2] Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;65:39–104. https ://doi.org/10.1016/j.mser.2009.03.001.
  • [3] Korshunov LG, Goikhenberg YN, Chernenko NK. Effect of alloying and heat treatment on the structure and tribological properties of nitrogen-bearing stainless austenitic steels under abrasive and adhesive wear. Met. Sci. Heat Treat. 2007;49:5–6. https ://link.sprin ger.com/conte nt/pdf/10.1007%2Fs11 041-007-0039-0.pdf Accessed 1 Aug 2019.
  • [4] Chauhan AK, Goel DB, Prakash S. Solid particle erosion behaviour of 13Cr–4Ni and 21Cr–4Ni–N steels. J Alloys Compd. 2009;467:459–64. https ://doi.org/10.1016/j.jallc om.2007.12.053.
  • [5] Kumar A, Sharma A, Goel SK. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23–8-N nitronic steel. Mater Sci Eng A. 2015;637:56–62. https ://doi.org/10.1016/J.MSEA.2015.04.031.
  • [6] Gadhikar AA. Characterization study of steels for erosion resistant applications, Ph.D. thesis, MNIT, Jaipur, MNIT Jaipur, 2011.
  • [7] Pan DZ, Farson DF. Simulation of nitrogen transport and desorption in laser welds of 21Cr–6Ni–9Mn stainless steel. Sci Techno Weld Join. 2014;19:646–52. https ://doi.org/10.1179/13621 71814Y.00000 00238 .
  • [8] Hosseini VA, Wessman S, Hurtig K, Karlsson L. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel. Mater Des. 2016. https ://doi.org/10.1016/j.matde s.2016.03.011.
  • [9] Galloway AM, Mcpherson NA, Baker TN. An evaluation of weld metal nitrogen retention and properties in 316LN austenitic stainless steel. Proc Inst Mech Eng Part L J Mater Des Appl. 2011;225:1–9. https ://doi.org/10.1177/14644 20711 39860 8.
  • [10] Zhao L, Tian Z, Peng Y. Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel. ISIJ Int. 2007;47:1772–5. https ://doi.org/10.2355/isiji ntern ation al.47.1772.
  • [11] Qiang W, Wang K. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel. J Mater Process Technol. 2017;250:169–81. https ://doi.org/10.1016/j.jmatp rotec .2017.07.021.
  • [12] Woo I, Aritoshi M, Kikuchi Y. Metallurgical and mechanical properties of high nitrogen austenitic stainless steel friction welds. ISIJ Int. 2002;42:401–6. https ://doi.org/10.2355/isiji ntern ation al.42.401.
  • [13] Li HB, Jiang ZH, Feng H, Zhang SC, Li L, Han PD, Misra RDK, Li JZ. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel. Mater Des. 2015;84:291–9. https ://doi.org/10.1016/j.matdes.2015.06.103.
  • [14] A.A. Gadhikar, C.P. Sharma, D.B. Goel, A. Sharma, Effect of Heat Treatment on Carbides in 23–8-N Steel, Met. Sci. Heat Treat. 53 (2011) 293–298. https ://link.sprin ger.com/conte nt/pdf/10.1007%2Fs11 041-011-9385-z.pdf Accessed 15 Sept 2018.
  • [15] Gadhikar AA, Sharma A, Goel DB, Sharma CP. Effect of carbides on erosion resistance of 23-8-N steel. Bull Mater Sci. 2014;37:315–9.
  • [16] Ranjbarnodeh E, Pouraliakbar H, Kokabi AH. Finite element simulation of carbide precipitation in austenitic stainless steel 304. Int J Mech Appl. 2012;2:117–23. https ://doi.org/10.5923/j.mecha nics.20120 206.03.
  • [17] Kumar N, Arora N, Goel SK. Effect of base metal solution annealing on mechanical and metallurgical properties of GMA welded nitronic steel. Mater Sci Eng A. 2020. https ://doi.org/10.1016/j.msea.2019.13854 2.
  • [18] Pouraliakbar H, Hamedi M, Kokabi AH, Nazari A. Designing of CK45 carbon steel and aisi 304 stainless steel dissimilar welds. Mater Res. 2014;17:106–14. https ://doi.org/10.1590/S1516 -1439201300 50001 70.
  • [19] Bermejo MAV. Predictive and measurement methods for delta ferrite determination in stainless steels. Weld J. 2012;91:113–21.
  • [20] Fu JW, Yang YS, Guo JJ. Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification. J Cyst Growth. 2009;311:3661–6. https ://doi.org/10.1016/J.JCRYS GRO.2009.05.007.
  • [21] Tate SB, Liu S. Solidification behaviour of laser welded type 21Cr–6Ni–9Mn stainless steel. Sci Technol Weld Join. 2014;19:310–7. https ://doi.org/10.1179/13621 71813 Y.0000000189 .
  • [22] Vashishtha H, Taiwade RV, Sharma S, Patil AP. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels. J Manuf Process. 2017;25:49–59. https://doi.org/10.1016/J.JMAPR O.2016.10.008.
  • [23] Pfeif EA. Characterization of nitrogen effects in high energy density weldments of Nitronic 40 stainless steel-ProQuest, Colorado School of Mines, United States, 2015. https ://searc h.proquest.com/docvi ew/16960 57880 Accessed 11 Jan 2020.
  • [24] Sarkari-Khorrami M, Mostafaei MA, Pouraliakbar H, Kokabi AH. Study on microstructure and mechanical characteristics of lowcarbon steel and ferritic stainless steel joints. Mater Sci Eng A. 2014;608:35–45. https ://doi.org/10.1016/j.msea.2014.04.065.
  • [25] Kumar N, Arora N, Goel SK, Goel DB. A comparative study of microstructure and mechanical properties of 21-4-N steel weld joints using different filler materials. Mater Today Proc. 2018;5:17089–96. https ://doi.org/10.1016/j.matpr .2018.04.116.
  • [26] Gavriljuk VG, Berns H, Escher C, Glavatskaya NI, Sozinov A, Petrov YN. Grain boundary strengthening in austenitic nitrogen steels. Mater Sci Forum. 2009;318–320:455–60. https ://doi.org/10.4028/www.scien tific .net/msf.318-320.455.
  • [27] Pandey C, Mahapatra MM. Effect of heat treatment on microstructure and hot impact toughness of various zones of P91 welded pipes. J Mater Eng Perform. 2016. https ://doi.org/10.1007/s11665-016-2064-x.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3ef7f2a-fe34-46e4-b717-1c1f008c366a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.