PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved Particle Swarm Optimization method for investment strategies parameters computing

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper studies the problem of computing the parameters for investment strategies. Proposed is an innovative modification of Particle Swarm Optimization algorithm for discrete and continuous data. The article shows how discrete and continuous version of the algorithm can be combined in order to achieve the best results. Moreover, the presented algorithm is expanded by a multi-swarm mechanism which allows to achieve better results in a fixed time. The proposed algorithm was tested on a simple investment strategy, based on one of the well known indicators Rate of Change (further referred as ROC) that uses a mixture of discrete and continuous parameters. All the tests were performed on a data gathered from one of the most important of currency pairs — EURUSD.
Rocznik
Strony
45--55
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Faculty of Computer Science and Information Technology,West Pomeranian University of Technology, Szczecin, Poland
autor
  • Faculty of Computer Science and Information Technology,West Pomeranian University of Technology, Szczecin, Poland
  • Faculty of Computer Science and Information Technology,West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
  • [1] Nuti, G., Mirghaemi, M., Treleaven, P., Yingsaeree, C.: Algorithmic Trading. Computer, 44(11), pp. 61–69, 2011. ISSN 0018-9162.
  • [2] Paraschiv, D., Raghavendra, S., Vasiliu, L.: Algorithmic Trading on an Artificial Stock Market. In: Badica, C., Mangioni, G., Carchiolo, V., Burdescu, D. (eds.), Intelligent Distributed Computing, Systems and Applications, volume 162 of Studies in Computational Intelligence, pp. 281–286. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-85256-8.
  • [3] Barbosa, R., Belo, O.: A Diversified Investment Strategy Using Autonomous Agents. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds.), Advances in Data Analysis, Data Handling and Business Intelligence, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 339–350. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-01043-9.
  • [4] Chau, K.: Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in Construction, 16(5), pp. 642 – 646, 2007. ISSN 0926-5805.
  • [5] Ibrahim, I., Yusof, Z., Nawawi, S., Rahim, M., Khalil, K., Ahmad, H., Ibrahim, Z.: A Novel Multi-state Particle Swarm Optimization for Discrete Combinatorial Optimization Problems. In: Computational Intelligence, Modelling and Simulation (CIMSiM), 2012 Fourth International Conference on, pp. 18–23. 2012. ISSN 2166-8531.
  • [6] Misra, B. B., Satapathy, S. C., Dash, P.: Particle Swarm Optimized Polynomials for Data Classification. In: Intelligent Systems Design and Applications, 2006. ISDA ’06. Sixth International Conference on, volume 1, pp. 649–654. 2006. ISBN 0-7695-2528-8.
  • [7] Khan, N., Iqbal, M., Baig, A.: Data Mining by Discrete PSO Using Natural Encoding. In: Future Information Technology (FutureTech), 2010 5th International Conference on, pp. 1–6. 2010.
  • [8] Rezaee Jordehi, A., Jasni, J.: Particle swarm optimisation for discrete optimisation problems: a review. Artificial Intelligence Review, pp. 1–16, 2012. ISSN 0269-2821.
  • [9] Wang, F., Yu, P., Cheung, D.: Complex stock trading strategy based on Particle Swarm Optimization. In: Computational Intelligence for Financial Engineering Economics (CIFEr), 2012 IEEE Conference on, pp. 1–6. 2012. ISBN 978-1-4673-1802-0.
  • [10] Wilinski, A., Bera, A., Nowicki, W., Blaszynski, P.: Study on the Effectiveness of the Investment Strategy Based on a Classifier with Rules Adapted by Machine Learning. ISRN Artificial Intelligence, 2014, 2014.
  • [11] Nenortaite, J., Simutis, R.: Adapting particle swarm optimization to stock markets. In: Intelligent Systems Design and Applications, 2005. ISDA ’05. Proceedings. 5th International Conference on, pp. 520–525. 2005. ISBN 0-7695-2286-6.
  • [12] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995. Proceedings., IEEE Int. Conf. on, volume 4, pp. 1942–1948 vol. 4. 1995. ISBN 0-7803-2768-3.
  • [13] Rosenbloom, C.: The Complete Trading Course: Price Patterns, Strategies, Setups, and Execution Tactics. Wiley Trading. Wiley, 2010. ISBN 9780470947296.
  • [14] Murphy, J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Penguin Group US, 1999. ISBN 9781101659199.
  • [15] Di Lorenzo, R.: Basic Technical Analysis of Financial Markets: A Modern Approach. Perspectives in Business Culture. Springer, 2013. ISBN 9788847054219.
  • [16] Stop-Loss Order. In: Lee, C.-F., Lee, A. (eds.), Encyclopedia of Finance, pp. 262–262. Springer US, 2006. ISBN 978-0-387-26284-0.
  • [17] Young, T. W.: Calmar Ratio: A Smoother Tool. Futures, 1991
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3ef1d60-d2e9-48d4-954a-95bad2e4e7cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.