PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the Influence of Vibratory Machining on Titanium Alloys Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article proposes these of vibratory machining to Ti-6Al-4V titanium alloy as finishing treatment. Titanium alloy was used in the aerospace industry, military, metallurgical, automotive and medical processes, extreme sports and other. The three-level three-factor Box-Behnken experiment examined the influence of machining time of vibratory machining, the type of mass finishing media used and the initial state of the surface layer on the mass loss, geometric structure of the surface, micro hardness and the optimal process parameters were determined. Considerations were given the surfaces after milling, after cutting with a band saw and after the sanding process. The experiment used three types of mass finishing media: polyester, porcelain and metal. Duration of vibratory machining treatment was assumed to be 20, 40, 60 minutes. The form profiles before and after vibratory machining were determined with the Talysurf CCI Lite - Taylor Hobson optical profiler. Future tests should concern research to carry out tests using abrasive pastes with a larger granulation of abrasive grains, to carry out tests for longer processing times and to determine the time after which the parameters of geometrical structure of the surface change is unnoticeable.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Kielce University of Technology, Department of Materials Science and Materials Technology, Kielce, Poland
autor
  • Kielce University of Technology, Department of Materials Science and Materials Technology, Kielce, Poland
Bibliografia
  • [1] Salacinski, T., Winiarski, M., Przesmycki, A., et al. (2018). Applying titanium coatings on ceramic surfaces by rotating brushes. 27th International Conference On Metallurgy And Materials (Metal 2018) (pp. 1235-1240).
  • [2] Zhao, Z.H., Chen, W., & Wu, T.Y. (2011). Calculation of fatigue Life of titanium alloy under high and low cycle composite load [J]. Mechanical Strength. 33(4), 629-632.
  • [3] Konieczny, M. & Dziadoń, A. (2007). Mechanical behaviour of multilayer metal-intermetallic laminate composite synthesised by reactive sintering of Cu/Ti foils. Archives of Metallurgy and Materials. 52(4), 555-562.
  • [4] Rokosz, K., Hryniewicz, T., Kacalak, W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matýsek D., Dudek Ł. & Pietrzak K. (2018). Characterization of porous phosphate coatings enriched with calcium, magnesium, zinc and copper created on CP titanium grade 2 by plasma electrolytic oxidation. Metals. 8(6), 411, 1-12. DOI:10.3390/met8060411.
  • [5] Zhecheva, A., Wei, S., Malinov, S., et al. (2005). Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coating Technology. 200(7), 2192-2207.
  • [6] Chang, X.D., Liu, D.X., Cui, T.F., et al. (2013). Effects of carburizing and shot peening on surface integrity and fatigue properties of 18Cr2Ni4WA steel. Mechanical Science and Technology. 32(11), 1584-1590.
  • [7] Bańkowski, D. & Spadlo, S. (2017). Vibratory machining effect on the properties of the aluminum alloys surface. Archives of Foundry Engineering. 17(4), 19-24.
  • [8] Bańkowski, D., Spadło, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. Proceedings of 26th International Conference on Metallurgy and Materials METAL 2017, (pp. 725-730).
  • [9] Bankowski, D., Spadlo, S. (2018). Influence of ceramic media on the effects of tumbler treatment. Proceedings of 27th International Conference on Metallurgy and Materials Metal 2018, (pp. 1062-1066).
  • [10] Qinglong, A.N. Jiaqiang, Dang. Gongyu, Liu. Dapeng Dong, Weiwei Ming & Ming Chen, (2019). A new method for deburring of servo valve core edge based on ultraprecision cutting with the designed monocrystalline diamond tool. Science China Technological Sciences. 62(10), 1805-1815.
  • [11] Nanda, I.P. Hassim, M.H., Idris, M.H. Jahare, M.H. & Arafat, A9987. (2019). Effect of mechanical tumbling parameters on surface roughness and edge radius of medical grade cobalt chromium alloy. International Journal on Advanced Science. Engineering and Information Technology. 9(1), 314-320.
  • [12] Stańczyk, M. & Figlus, T. (2019). The effect of selected parameters of vibro-abrasive processing on the surface quality of products made of 6082 aluminium alloy. Materials. 12(24), 4117. DOI: 10.3390/ma12244117.
  • [13] Swiercz, R. Oniszczuk-Swiercz, D. & Dabrowski, L. (2018). Electrical discharge machining of difficult to cut materials. Archive of Mechanical Engineering. 65(4), 461-476. DOI: 10.24425/ame.2018.125437.
  • [14] Jedrzejczyk, D., Hajduga, M.(2013). The influence of the kind of surfrace treatment on the wear of machines elements applied in the textile industry. Metal 2013: 22nd International Conference on Metallurgy and Materials, pp: 880-885.
  • [15] Wrona, R., Zyzaka, P., Ziółkowski, E. & Brzeziński, M. (2012). Methodology of Testing Shot Blasting Machines in Industrial Conditions. Archives of Metallurgy and Materials. 12(2), 97-104.
  • [16] Pietnickia, K., Wołowiec, E. & Klimek, L. (2011). Modeling of the number of stubble stuck elements after abrasive jet machining-processing. Archives of Metallurgy and Materials. 11(3), 51-54.
  • [17] Woźniak, K. (2017). Surface treatment in container smoothing machines. Warszawa: WNT. (in Polish).
  • [18] Ames, E.C. (2012). Repair of high-value high-demand spiral bevel gears by superfinishing. Gear Technology. 50-59.
  • [19] Bańkowski, D. & Spadło S. (2019) The influence of abrasive paste on the effects of vibratory machining of brass. Archives of Foundry Engineering. 19(4), 5-10.
  • [20] Kumar, P.P. & Sathyan, S. (2012). Simulation of 1D abrasive vibratory finishing process. Advanced Materials Research. 565, 290-295. DOI: 10.4028/www.scientific.net/ AMR.565.290.
  • [21] Bańkowski, D. & Spadło, S. (2015). Influence of the smoothing conditions in vibro-abrasive finishing and deburring process for geometric structure of the surface machine parts made of aluminum alloys EN AW2017. Proceedings of 24th International Conference on Metallurgy and Materials, METAL 2015, (pp. 1062-1068).
  • [22] Davidson, D.A. (2002). Finishing Processes. Metal Finishing Guidebook and Directory. New York: TAM surfaces are Elsevier Science.
  • [23] Glvan, D.O. Radu I., Babanatsas T., Babanatis Merce R.M., Kiss I. & Gaspar M.C. (2018). Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing. International Conference on Applied Sciences (ICAS2017), IOP Conference Series: Materials Science and Engineering, Volume 294, (2018) 012069, 10–12 May 2017, Hunedoara, Romania. DOI:10.1088/1757-899X/294/1/012069.
  • [24] Massarsky, M.L. & Davidson, D.A. (2002) Turbo-abrasive machining – a new technology for metal and non-metal part finishing. The Finishing Line. 18(4).
  • [25] Janecki, D. Stępień, K. & Adamczak, S. (2010). Problems of measurement of barrel and saddle-shaped elements using the radial method. Measurement. 43(5), 659-663.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3eee6fe-ed3a-4157-9e95-aa97296035b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.