PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Electrode Extension on the Geometry of Parts Made of 316LSi Steel by Wire Arc Additive Manufacturing Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intensive research is currently being conducted on WAAM (Wire Arc Additive Manufacturing) processes. Previous studies have demonstrated the impact of current parameters on altering the structure and properties of 316L stainless steel. However, there is a lack of comprehensive information in the literature regarding the influence of electrode extension length (contact to tube distance) on changes in the structure and geometry of parts made of 316L steel using the CMT (Cold Metal Transfer) method. This parameter was often assumed to be constant in research experiments. The study aimed to determine how the length of the electrode extension affects the geometric properties of steel walls produced in the WAAM CMT additive manufacturing process. The experiment used 316LSi stainless steel to build 3D structures in the shape of straight walls. The chosen shape of the parts yielded the most benefits for preparing samples from the resulting structures for destructive testing. The research demonstrated that the length of the electrode extension is a crucial parameter in the additive manufacturing process of structures using the WAAM method. Modifying the electrode extension length in the WAAM process with a CMT machine impacts the bead geometry and, consequently, the overall model geometry. A 6 mm increase in the electrode extension length resulted in a model that was over 8 mm taller, despite using the same number of layers.
Twórcy
  • Warsaw University of Technology, Institute of Manufacturing Technologies, Department of Welding Engineering, Narbutta 85, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Institute of Manufacturing Technologies, Department of Welding Engineering, Narbutta 85, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Institute of Manufacturing Technologies, Department of Welding Engineering, Narbutta 85, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Photonics and Micromechanics, Narbutta 87, Warsaw, Poland
Bibliografia
  • 1. Dilberoglu U.M., Gharehpapagh B., Yaman U., Dolen M. The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf. 2017; 11: 545–554. https://doi.org/10.1016/j.promfg.2017.07.148
  • 2. Prashar G., Vasudev H., Bhuddhi D. Additive manufacturing: expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. 2022. https://doi. org/10.1007/s12008-022-00956-4.
  • 3. Gibson I., Rosen D.W., Stucker Br. Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing. Springer New York, 2015. https://doi.org/10.1007/978-1-4419-1120-9.
  • 4. Gade S., Vagge S., Rathod M. A review on additive manufacturing – methods, materials, and its associated failures. Advances in Science and Technology Research Journal 2023; 17(3): 40–63. https://doi. org/10.12913/22998624/163001
  • 5. Ananda P.A., WAAM Application for EPC Company, MATEC Web of Conferences 269, 05002 (2019), https://doi.org/10.1051/matecconf/201926905002
  • 6. Kah P. Advancements in Intelligent Gas Metal Arc Welding Systems Fundamentals and Applications. Woodhead Publishing Series in Welding and Other Joining Technologies, 2021; 1-103. Elsevier Science Ltd. https://doi.org/10.1016/ C2019-0-04191-X
  • 7. Guo N., Leu M.C. Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 2013; 8: 215–243. https://doi.org/10.1007/ s11465-013-0248-8
  • 8. Kołodziejczak P., Bober M., Chmielewski T. Wear Resistance Comparison Research of High-Alloy Protective Coatings for Power Industry Prepared by Means of CMT Cladding. Applied Sciences, 2022; 12(9): 4568, 1-13. https://doi.org/10.3390/app12094568
  • 9. Chen X., Su C., Wang Y. et al. Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System. J. Surf. Investig. 2018; 12: 1278– 1284. https://doi.org/10.1134/S102745101901004X
  • 10. Naidu D.S., Ozcelik S., Moore K.L. Modeling, Sensing and Control of Gas Metal Arc Welding, Elsevier Science Ltd, 2003. https://doi.org/10.1016/ B978-0-08-044066-8.X5000-9
  • 11. Li Y., Su, C. Zhu J., Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects, Results Eng. 2022; 13: 100330. https://doi.org/10.1016/j. rineng.2021.100330
  • 12. Bintao W. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J. Manuf. Processes. 2018; 35: 127- 139. https://doi.org/10.1016/j.jmapro.2018.08.001.
  • 13. Salmi, M. Pei E. Additive manufacturing processes and materials for spare parts. J. Mech. Sci. Technol. 2023; 37(11): 5979-5990. https://doi.org/10.1007/ s12206-023-1034-0
  • 14. Williams S.W., Martina F., Addison A.C., Ding J., Pardal G., Colegrove P. Wire + Arc Additive Manufacturing, Materials Science and Technology, 2016; 32(7): 641-647. https://doi.org/10.1179/174328471 5Y.0000000073
  • 15. Taşdemir A., Nohut S. An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry, Ships and Offshore Structures, 2021; 16(7): 797-814. https://doi.org/10.1080/17445302.2020.1786232.
  • 16. Wordofa T.N., Ramulu, P.J. Gas Metal Arc Welding Input Parameters Impacts on Weld Quality Characteristics of Steel Materials a Comprehensive Exploration. Manuf. Technology, 2023; 3(23): 366-379. https://doi.org/10.21062/mft.2023.046
  • 17. Silva R.H.G., dos Santos Paes L.E., Barbosa R.C. et al. Assessing the effects of solid wire electrode extension (stick out) increase in MIG/MAG weld- ing. J Braz. Soc. Mech. Sci. Eng. 2018; 40: 31. https://doi.org/10.1007/s40430-017-0948-9
  • 18. Shen H., Deng R., Liu B., Tang S., Li S. Study of the Mechanism of a Stable Deposited Height During GMAW-Based Additive Manufacturing. Appl. Sci. 2020; 10: 4322. https://doi.org/10.3390/app10124322
  • 19. Cicic D.T., Rontescu C., Amza C.G., Semenescu A. Research Concerning the Influence of Contact Tip- to-Work Distance (CTWD) on Penetration, Bead Height, Bead Width - Study Case GMAW Cladding. AMR 2015, 1088,774–8. https://doi.org/10.4028/ www.scientific.net/amr.1088.774
  • 20. Ali M.H., Han Y.S. A Finite Element Analysis on the Effect of Scanning Pattern and Energy on Residual Stress and Deformation in Wire Arc Additive Manufacturing of EH36 Steel. Materials, 2023; 16: 4698. https://doi.org/10.3390/ma16134698
  • 21. Marefat F., Kapil A., Banaee S.A.,Van Rymenant P., Sharma A. Evaluating shielding gas-filler wire interaction in bi-metallic WAAM of creep resistant steelstainless steel for improved process stability and build quality. J. Manuf. Processes. 2023; 88: 110– 124. https://doi.org/10.1016/j.jmapro.2023.01.046
  • 22. Kemény D.M., Sándor B., Varbai B., Katula L.T., The effect of arc voltage and shielding gas type on the microstructure of wire arc additively manufactured 2209 Duplex stainless steel, Advances in Materials Science, 2033; 23: 4(78). https://doi. org/10.2478/adms-2023-0023
  • 23. Ghumman K.Z., Ali S., Ud Din E., Mubashar A., Khan N.B., Ahmed S.W. Experimental investigation of effect of welding parameters on surface roughness, micro-hardness and tensile strength of AISI 316L stainless steel welded joints using 308L filler material by TIG welding, J. Manuf. Res. Technol. 2022; 21: 220-236. https://doi.org/10.1016/j.jmrt.2022.09.016
  • 24. Xiong J., Li Y., Li R., Yin Z. Influences of proces parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing, J. Mater. Proc. Technol., 2018; 252: 128-136. https://doi.org/10.1016/j. jmatprotec.2017.09.020
  • 25. Nagasai B.P., Malarvizhi S., Balasubramanian V. Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes, J. Mater. Proc. Technol. 2022; 307: 117655. https://doi.org/10.1016/j.jmatprotec.2022.117655
  • 26. Belotti L.P , van Nuland T.F.W., Geers M.G.D., Hoefnagels J.P.M., van Dommelen J.A.W. On the anisotropy of thick-walled wire arc additively manufactured stainless steel parts, Mater. Sci. Eng. 2023; A863: 144538. https://doi.org/10.1016/j. msea.2022.144538
  • 27. Bruggi M., Laghi V., Trombetti T. Optimal Design of Wire-and-Arc Additively Manufactured I-Beams for Prescribed Deflection, Comput. Assisted Methods Eng. Sci. 2022; 29(4): 357–378. https://doi. org/10.24423/cames.469.
  • 28. Zhou T., Zheng T., Yildiz A.B., Spartacus G., Rolinska M., Cubitt R., Hedstrom P. Microstructure control during deposition and post-treatment to optimize mechanical properties of wire-arc additively manufactured 17-4 PH stainless steel. Addit. Manuf. 2022; 58: 103047. https://doi.org/10.1016/j.addma.2022.103047.
  • 29. Wahsh L.M., El Shater A.E., Mansour A.E., Hamdy F.A., Turky M.A., Azzam M.O., Salem H.G. Parameter Selection for Wire Arc Additive Manufacturing (WAAM) Process, Contributed Papers from Materials Science and Technology 2018 (MS&T18) October 14–18, 2018, Columbus, Ohio, USA, 78-85. 10.7449/2018mst/2018/mst_2018_78_85.
  • 30. Rodrigues T.A., Duarte V., Avila J.A., Santos T.G., Miranda R.M., Oliveira J.P. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties. Addit. Manuf. 2019; 27: 440-450. https://doi. org/10.1016/j.addma.2019.03.029.
  • 31. Suarez A., Aldalur E., Veiga F., Artaza T., Tabernero I., Lamikiz A. Wire arc additive manufacturing of an aeronautic fitting with different metal alloys: From the design to the part. J. Manuf. Proc. 2021; 64: 188– 197. https://doi.org/10.1016/j.jmapro.2021.01.012.
  • 32. Cunningham C.R., Flynn J.M., Shokrani A., Dhokia V., Newman S.T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf., 2018; 22: 672-686. https://doi.org/10.1016/j.addma.2018.06.020.
  • 33. Lee S.H. CMT-Based Wire Arc Additive Manufactur- ing Using 316L Stainless Steel: Effect of Heat Accumulation on the Multi-Layer Deposits. Metals. 2020; 10(2): 278. https://doi.org/10.3390/met10020278
  • 34. Shah A., Aliyev R., Zeidler H., Krinke S. A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process. J. Manuf. Mater. Process. 2023; 7: 97. https://doi. org/10.3390/jmmp7030097
  • 35. Henckell P., Gierth M., Ali Y., Reimann J., Bergmann J.P., Reduction of Energy Input in Wire Arc Additive Manufacturing (WAAM) with Gas Metal Arc Welding (GMAW), Materials, 2020; 13: 2491. https://doi.org/10.3390/ma13112491.
  • 36. Jin W., Zhang C., Jin S., Tian Y., Wellmann D., Liu W. Wire Arc Additive Manufacturing of Stainless Steels: A Review. Applied Sciences. 2020; 10(5): 1563. https://doi.org/10.3390/app10051563
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3ed1111-165b-495e-ba2b-3d7ed4c55c2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.