PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of unit haulage cost in an underground mine using machine learning techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of the research was to apply machine learning techniques to forecast the unit costs of ore hauling in an underground mine. The methodology employed was quantitative, with a nonexperimental and descriptive design. Haulage data were collected over a 12-month period. Furthermore, an exploratory data analysis (EDA) was conducted using various models, including ANN-MLP (Artificial Neural Network – Multilayer Perceptron), Random Forests, Extreme Gradient Boosting, Support Vector Regression, Decision Tree, KNN, and Bayesian Regression, to handle the data’s complexity. The data were split into 80% for training, 10% for testing, and 10% for validation. The results indicated that the ANN-MLP achieved an R2 of 0.94 and an MSE of 8.77, the Random Forests showed an R2 of 0.97 with an MSE of 3.78, XGBoost achieved an R2 of 0.99 with an MSE of 2.03, SVR yielded an R2 of 0.96 with an MSE of 5.05, KNN obtained an R2 of 0.90 with an MSE of 13.57, and the Bayesian Regression model achieved an R2 of 0.88 with an MSE of 16.15. Ultimately, it was concluded that the XGBoost model exhibited the best performance in forecasting the unit costs of ore haulage in an underground mine.
Rocznik
Strony
250--266
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • National University of Trujillo, Department of Mining Engineering, Peru
  • National University of Trujillo, Department of Mining Engineering, Peru
autor
  • National University of Trujillo, Department of Mining Engineering, Peru
Bibliografia
  • [1] Kumar F, Saim A, Oppong M, Arthur C. Predicting open pit mine production using machine learning techniques. J Sustain Mining 2018;23(2):118e31. https://doi.org/10.46873/ 2300-3960.1411.
  • [2] Mahboob M, Celik T, Genc B. Review of machine learning-based Mineral Resource estimation. J S Afr Inst Min Metall 2022;122(11):655e64. https://doi.org/10.17159/ 2411-9717/1250/2022.
  • [3] Abuntori C, Al-Hassan S, Mireku-Gyimah D, Ziggah Y. Evaluating the performance of extreme learning machine technique for ore grade estimation. J Sustain Mining 2021; 20(2):56e71. https://doi.org/10.46873/2300-3960.1062.
  • [4] Chakraborty S, Palaniappan S, Bisai R, Roy R, Pal S, Rao K. Predicting young’s modulus of Indian coal measure rock using multiple regression and artificial neutral network. J Sustain Mining 2023;22(1):41e54. https://doi.org/10.46873/ 2300-3960.1373.
  • [5] Sun X, Zhang H, Tian F, Yang L. The use of a machine learning method to predict the real-time link travel time of open-pit trucks. Hindawi 2018:1e2. https://doi.org/10.1155/ 2018/4368045.
  • [6] Palaka D, Paczesny B, Gurdziel M, Wieloch W. Industry 4. 0 in development of new technologies for underground mining. EDP Sciences; 2020. https://doi.org/10.1051/e3sconf/ 202017401002.
  • [7] Pentavratzi E, Kingman S, Lowndes I. Particulates from mining operations: a review of sources, effects and regulations. Miner Eng 2005;18(12):1183e99. https://doi.org/10. 1016/j.mineng.2005.06.017.
  • [8] Park S, Choi Y, Park H. Optimization of truck-loader haulage systems in an underground mine using simulation methods. Geosyst Eng 2016;19(5):222e31. https://doi.org/10.1080/ 12269328.2016.1176538.
  • [9] Salama A, Greberg J, Schunnesson H. The use of discrete event simulation for underground haulage mining equipment selection. Int J Min Miner Eng 2014;5(3):256e71. https://doi.org/10.1504/IJMME.2014.064486.
  • [10] Pasch O, Uludag S. Optimization of the load-and-haul operation at an opencast colliery. J S Afr Inst Min Metall 2018;118(5):449e56. https://doi.org/10.17159/2411-9717/2018/ v118n5a1.
  • [11] Samatemba B, Zhang L, Besa B. Evaluating and optimizing the effectiveness of mining equipment; the case of Chibu-luma South underground mine. J Clean Prod 2020;252. https://doi.org/10.1016/j.jclepro.2019.119697.
  • [12] Baek J, Choi Y. Deep neural network for ore production and crusher utilization prediction of truck haulage system in underground mine. Appl Sci 2019;9(19):4180. https://doi.org/ 10.3390/app9194180.
  • [13] Theissler A, Perez-Velasquez J, Kettelgerdes M, Elger G. Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry. Reliab Eng Syst Saf 2021;215. https://doi.org/10.1016/j.ress.2021.107864.
  • [14] Skoczylas A, Rot A, Stefaniak P, Sliwinski P. Haulage cycles identification for wheeled transport in underground mine using neural networks. Sensors 2023;23(3):1331. https://doi. org/10.3390/s23031331.
  • [15] Hossein M, Alamdari S, Mousavi A, Soofastaei A. Application of machine learning techniques to predict haul truck fuel consumption in open-pit mines. J Mining Environ (JME) 2022; 13(1):69e85. https://doi.org/10.22044/jme.2022.11577.2145.
  • [16] Choi Y, Baek J. Deep neural network for ore production and crusher utilization prediction of truck haulage system in underground mine. Appl Sci 2019;9(19):4180. https://doi.org/ 10.3390/app9194180.
  • [17] Yardimei A, Karpuz C. Shortest path optimization of haul road design in underground mines using an evolutionary algorithm. Appl Soft Comp J 2019;83:105668. https://doi.org/ 10.1016/j.asoc.2019.105668.
  • [18] Wang H, Tenorio V, Li G, Hu N. Optimization of trackless equipment scheduling in underground mines using genetic algorithms. Mining Metal Explor 2020;37:1531e44. https:// doi.org/10.1007/s42461-020-00285-8.
  • [19] Gamache M, Renaud P. A shortest-path algorithm for solving the fleet management problem in underground mines. Eur J Oper Res 2005;166(2):497e506. https://doi.org/10.1016/j. ejor.2004.03.008.
  • [20] Park S, Jung D, Choi Y. Prediction of ore production in a limestone underground mine by combining machine learning and discrete event simulation techniques. Minerals 2023;13(6). https://doi.org/10.3390/min13060830.
  • [21] Choi Y, Nguyen H, Bui X, Nguyen T. Optimization of haulagetruck system performance for ore production in open-pit mines using big data and machine learning-based methods. Resour Pol 2022;75. https://doi.org/10.1016/j.resourpol.2021.102522.
  • [22] Heydari S, Hadi S, Bagherpour R. Prediction of jumbo drill penetration rate in underground mines using various machine learning approaches and traditional models. Sci Rep 2024;14. https://doi.org/10.1038/s41598-024-59753-6.
  • [23] Guo H, Nguyen H, Vu D, Bui X. Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach. Resour Pol 2021;74. https://doi.org/10. 1016/j.resourpol.2019.101474.
  • [24] Temeng V, Ziggah Y, Arthur C. Blast-induced noise level prediction model based on brain inspired emotional neural network. J Sustain Mining 2021;20(1). https://doi.org/10. 46873/2300-3960.1043.
  • [25] Sarker H. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2021;2(160). https://doi.org/10.1007/s42979-021-00592-x.
  • [26] Kearns D. Machine learning in the mining industry d a case study. Sustain Data 2017;31.
  • [27] Behrang M, Assareh E, Ghanbarzadeh A, Noghrehabadi A. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol Energy 2010;84(8):1468e80. https:// doi.org/10.1016/j.solener.2010.05.009.
  • [28] Tadeusiewicz R. Neural networks in mining sciences - general overview and some representative examples. Arch Min Sci 2015;60(4):971e84. https://doi.org/10.1515/amsc-2015-0064.
  • [29] Shang Y, Nguyen H, Bui X, Tran Q, Moayedi H. A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat Resour Res 2020; 29:723e37. https://doi.org/10.1007/s11053-019-09503-7.
  • [30] Skiba M. The influence of the discrepancies in the observers’ decisions on the process of identification of maceral groups using artificial neural networks. J Sustain Mining 2016;15(4): 151e5. https://doi.org/10.1016/j.jsm.2017.03.001.
  • [31] Hejmanowski R, Witkowski W. Suitability assessment of artificial neural network to approximate surface subsidence due to rock mass drainage. J Sustain Mining 2015;14(2): 101e7. https://doi.org/10.1016/j.jsm.2015.08.014.
  • [32] Tianqi C, Guestrin C. XGBoost: a scalable tree boosting system. Know Disc Data Mining 2016:785e94. https://doi. org/10.1145/2939672.2939785.
  • [33] Yingyue C, Yumin C, Jingru Y. BGRF: a broad granular random forest algorithm. J Intell Fuzzy Syst 2023;44(5): 8103e17. https://doi.org/10.3233/JIFS-223960.
  • [34] Pathak S, Mishra I, Swetapadma A. An assessment of decision tree based classification and regression algorithms. In: 2018 3rd international conference on inventive computation technologies. ICICT; 2020. https://doi.org/10.1109/ICICT43934.2018. 9034296.
  • [35] Yu K, Zhang X. Kernel nearest neighbor algorithm. Neural Process Lett 2002:147e56. https://doi.org/10.1023/A: 101524490296.
  • [36] Srivastava D, Bhambhu L. Data classification using support vector machine. J Theor Appl Inf Technol 2010;12(1):1e7. https://doi.org/10.1007/978-1-4302-5990-9_3.
  • [37] Sajan J. A brief introduction to classical and quantum machine learning algorithms using SVM (Support Vector Machines). Medium. Available at: https://medium.com/@josksaj144/ a-brief-introduction-to-classical-and-quantum-machine-learning-algorithms-using-svm-support-vector-80ea5398b835; 2023.
  • [38] Stein M, Beer M, Kreinovich V. Bayesian approach for inconsistent information. Inf Sci 2013;245(1e3):96e111. https://doi.org/10.1016/j.ins.2013.02.024.
  • [39] Park S, Choi Y, Nguyen H, Topal E. Application of cubist algorithm, multi-layer perceptron neural network, and metaheuristic algorithms to estimate the ore production of truck-haulage systems in open-pit mines. Appl Artif Intell Mining Geotech Geoeng 2024:113e30. https://doi.org/10. 1016/B978-0-443-18764-3.00010-2.
  • [40] Nguyen H, Bui X, Bac X, Coung D. Correction to: developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophys 2021;69(2):427e8. https://doi.org/10.1007/s11600-021-00575-9.
  • [41] Amat J. Bayesian optimization of machine learning models. Revolution 2016;5:1e10.
  • [42] San Millan-Castillo R, Morgado E, Goya-Esteban R. On the use of decision tree regression for predicting vibration frequency response of handheld probes. IEEE Sensor J 2020;20(8):4120e30. https://doi.org/10.1109/JSEN. 2019.2962497.
  • [43] Li N, Wu Y, Wang Q, Ye H, Wang L, Jia M. Underground mine truck travel time prediction based on stacking integrated learning. Eng Appl 2023;120. https://doi.org/10.1016/j. engappai.2023.105873.
  • [44] Elnaz S, Saeid D. Prediction of fuel consumption of mining dump trucks: a neural networks approach. Appl Energy 2015;151:77e84. https://doi.org/10.1016/j.apenergy. 2015.04.064.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3e787ef-97f1-491d-a5dc-195b9c7d166e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.