Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a conception of manufacturing a hollow axle using three skewed rolls moving at the same rotating speed, axially moving chuck and a moving mandrel. The outer shape of the axle is obtained as a result of combining the radial feed of the rolls with axial feed of the chuck. The hole in the axle, however, is obtained as a result of the mandrel acting on the workpiece while moving along with it. In order to assess the correctness of the presented concept of forming, a numerical simulation was performed in Simufact.Forming commercial software. The results of the simulation confirmed that the applied method allows one to manufacture large-size hollow axles. Moreover, information on force parameters of the forming process, which can be used for designing an industrial rolling mill was obtained.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
146--154
Opis fizyczny
Bibliogr. 24 poz., fig.
Twórcy
autor
- Mechanical Faculty, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
- Mechanical Faculty, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
- 1. Tomczak J. 2016. Studium procesów obciskania obrotowego odkuwek drążonych. Wyd. Politechniki Lubelskiej, Lublin.
- 2. Romanenko V.P., Stepanov P.P., Kriskovich S.M. 2017. Production of Hollow Railroad Axles by Screw Piercing and Radial Forging. Metalurgist, 61(9–10), 873–877.
- 3. Shu X., Wei X., Li C. Hu Z. 2010. The Influence Rules of Stress about Technical Parameters on Synchronous Rolling Railway Axis with Multi-wedge Cross-wedge Rolling. Applied Mechanics and Materials, 37–38, 1482–1488.
- 4. Pater Z., Tomczak J. 2018. A New Cross Wedge Rolling Process for Producing Rail Axles. MATEC Web of Conferences. 1090:e11006.
- 5. Pater Z. 2020. Numerical analysis of the cross-wedge rolling process of a railway axle. Mechanik, 2, 18–21.
- 6. Hu B., Shu X., Yu P., Peng W. 2014. The Strain Analysis at the Broadening Stage of the Hollow Railway Axle by Multi-wedge Cross Wedge Rolling. Applied Mechanics and Materials, 494–495, 457–460.
- 7. Sun B., Zeng X., Shu X., Peng W., Sun P. 2012. Feasibility Study on Forming Hollow Axle with Multiwedge Synchrostep by Cross Wedge Rolling. Applied Mechanics and Materials, 201–202, 673–674.
- 8. Zheng S., Shu X., Han S., Yu P. 2019. Mechanism and force-energy parameters of a hollow shaft’s multiwedge synchrostep cross-wedge rolling. Journal of Mechanical Science and Technology, 33(5), 1–10.
- 9. Peng W., Zheng S., Chiu Y., Shu X., Zhan L. 2016. Multi-wedge Cross Wedge Rolling Process of 42CrMo4 Large and Long Hollow Shaft. Rare Materials and Engineering, 45(4), 836–842.
- 10. Pater Z., Lis K., Walczuk-Gągała P. 2020. Numerical Analysis of the Cross-Wedge of Hollow Rail Axle. Advances in Science and Technology Research Journal, 14(1), 145–153.
- 11. Pater Z., Tomczak J., Bulzak T., Wójcik Ł. 2021. Conception of a Three Roll Cross Rolling Process of Hollow Rail Axles. ISIJ International, 61(3), 895–901.
- 12. Pater Z., Tomczak J., Bulzak T. 2015. Numerical analysis of the skew rolling process for rail axles. Archives of Metallurgy and Materials, 60(1), 415–418.
- 13. Xu C., Shu X. 2018. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1:5. Metalurgija, 57(3), 153–156.
- 14. Pater Z., Tomczak J., Lis K., Bulzak T., Shu X. 2020. Forming of rail car axles in CNC skew rolling mill. Archives of Civil and Mechanical Engineering. 20:e69.
- 15. Pater Z., Tomczak J., Bulzak T. 2020. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. Journal of Materials Research and Technology, 9(5), 10434–10446.
- 16. Wang J.T., Shu X.D., Zhang S. 2020. Effect of process parameters on average grain size and microscopic uniformity of the three-roll skew rolling forming of the railway hollow shaft. Metalurgija, 59(1), 47–50.
- 17. Pater Z. 2020. A Comparative Analysis of Forming Railway Axles in 3and 4-Roll Rolling Mills. Materials, 13:e3084.
- 18. Murillo-Marrodan A., Garcia E., Cortes F. 2018. A study of friction model performance in a skew rolling process numerical simulation. International Journal of Simulation Modeling, 17(4), 569–582.
- 19. Pater Z. 2014. Cross Wedge Rolling. In: Button ST, Ed. Comprehensive Materials Processing, Elsevier Ltd, 3, 211–279.
- 20. Yamane K., Shimoda K., Kuroda K., Kajikawa S., Kuboki T. 2021. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. Journal of Materials Processing Technology, 291:e116989.
- 21. Pater Z., Tomczak J., Bulzak T., Wojcik Ł., Skripalenko M.M. 2021. Prediction of ductile fracture in skew rolling processes. International Journal of Machine Tools and Manufacture, 163:e103706.
- 22. Cockroft M.G., Latham D.J. 1968. Ductility and the workability of metals. Journal of the Institute of Metals. 96, 33–39.
- 23. Oh S.I., Chen C.C., Kobayashi S. 1979. Ductile fracture in axisymmetric extrusion and drawing. Part II Workability in extrusion and drawing. Journal of Industrial Engineering International, 101(1), 36–44.
- 24. Pater Z., Tomczak J., Bulzak T. 2020. Rotary compression as a new calibration test for prediction of a critical damage value. Journal of Materials Research and Technology, 9(3), 5487–5498.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3e771b0-a638-425b-b515-a95e829329f2