PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conception of Hollow Axles Forming by Skew Rolling with Moving Mandrel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a conception of manufacturing a hollow axle using three skewed rolls moving at the same rotating speed, axially moving chuck and a moving mandrel. The outer shape of the axle is obtained as a result of combining the radial feed of the rolls with axial feed of the chuck. The hole in the axle, however, is obtained as a result of the mandrel acting on the workpiece while moving along with it. In order to assess the correctness of the presented concept of forming, a numerical simulation was performed in Simufact.Forming commercial software. The results of the simulation confirmed that the applied method allows one to manufacture large-size hollow axles. Moreover, information on force parameters of the forming process, which can be used for designing an industrial rolling mill was obtained.
Słowa kluczowe
Twórcy
  • Mechanical Faculty, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Mechanical Faculty, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • 1. Tomczak J. 2016. Studium procesów obciskania obrotowego odkuwek drążonych. Wyd. Politechniki Lubelskiej, Lublin.
  • 2. Romanenko V.P., Stepanov P.P., Kriskovich S.M. 2017. Production of Hollow Railroad Axles by Screw Piercing and Radial Forging. Metalurgist, 61(9–10), 873–877.
  • 3. Shu X., Wei X., Li C. Hu Z. 2010. The Influence Rules of Stress about Technical Parameters on Synchronous Rolling Railway Axis with Multi-wedge Cross-wedge Rolling. Applied Mechanics and Materials, 37–38, 1482–1488.
  • 4. Pater Z., Tomczak J. 2018. A New Cross Wedge Rolling Process for Producing Rail Axles. MATEC Web of Conferences. 1090:e11006.
  • 5. Pater Z. 2020. Numerical analysis of the cross-wedge rolling process of a railway axle. Mechanik, 2, 18–21.
  • 6. Hu B., Shu X., Yu P., Peng W. 2014. The Strain Analysis at the Broadening Stage of the Hollow Railway Axle by Multi-wedge Cross Wedge Rolling. Applied Mechanics and Materials, 494–495, 457–460.
  • 7. Sun B., Zeng X., Shu X., Peng W., Sun P. 2012. Feasibility Study on Forming Hollow Axle with Multiwedge Synchrostep by Cross Wedge Rolling. Applied Mechanics and Materials, 201–202, 673–674.
  • 8. Zheng S., Shu X., Han S., Yu P. 2019. Mechanism and force-energy parameters of a hollow shaft’s multiwedge synchrostep cross-wedge rolling. Journal of Mechanical Science and Technology, 33(5), 1–10.
  • 9. Peng W., Zheng S., Chiu Y., Shu X., Zhan L. 2016. Multi-wedge Cross Wedge Rolling Process of 42CrMo4 Large and Long Hollow Shaft. Rare Materials and Engineering, 45(4), 836–842.
  • 10. Pater Z., Lis K., Walczuk-Gągała P. 2020. Numerical Analysis of the Cross-Wedge of Hollow Rail Axle. Advances in Science and Technology Research Journal, 14(1), 145–153.
  • 11. Pater Z., Tomczak J., Bulzak T., Wójcik Ł. 2021. Conception of a Three Roll Cross Rolling Process of Hollow Rail Axles. ISIJ International, 61(3), 895–901.
  • 12. Pater Z., Tomczak J., Bulzak T. 2015. Numerical analysis of the skew rolling process for rail axles. Archives of Metallurgy and Materials, 60(1), 415–418.
  • 13. Xu C., Shu X. 2018. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1:5. Metalurgija, 57(3), 153–156.
  • 14. Pater Z., Tomczak J., Lis K., Bulzak T., Shu X. 2020. Forming of rail car axles in CNC skew rolling mill. Archives of Civil and Mechanical Engineering. 20:e69.
  • 15. Pater Z., Tomczak J., Bulzak T. 2020. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. Journal of Materials Research and Technology, 9(5), 10434–10446.
  • 16. Wang J.T., Shu X.D., Zhang S. 2020. Effect of process parameters on average grain size and microscopic uniformity of the three-roll skew rolling forming of the railway hollow shaft. Metalurgija, 59(1), 47–50.
  • 17. Pater Z. 2020. A Comparative Analysis of Forming Railway Axles in 3and 4-Roll Rolling Mills. Materials, 13:e3084.
  • 18. Murillo-Marrodan A., Garcia E., Cortes F. 2018. A study of friction model performance in a skew rolling process numerical simulation. International Journal of Simulation Modeling, 17(4), 569–582.
  • 19. Pater Z. 2014. Cross Wedge Rolling. In: Button ST, Ed. Comprehensive Materials Processing, Elsevier Ltd, 3, 211–279.
  • 20. Yamane K., Shimoda K., Kuroda K., Kajikawa S., Kuboki T. 2021. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. Journal of Materials Processing Technology, 291:e116989.
  • 21. Pater Z., Tomczak J., Bulzak T., Wojcik Ł., Skripalenko M.M. 2021. Prediction of ductile fracture in skew rolling processes. International Journal of Machine Tools and Manufacture, 163:e103706.
  • 22. Cockroft M.G., Latham D.J. 1968. Ductility and the workability of metals. Journal of the Institute of Metals. 96, 33–39.
  • 23. Oh S.I., Chen C.C., Kobayashi S. 1979. Ductile fracture in axisymmetric extrusion and drawing. Part II Workability in extrusion and drawing. Journal of Industrial Engineering International, 101(1), 36–44.
  • 24. Pater Z., Tomczak J., Bulzak T. 2020. Rotary compression as a new calibration test for prediction of a critical damage value. Journal of Materials Research and Technology, 9(3), 5487–5498.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3e771b0-a638-425b-b515-a95e829329f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.