PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Process parameter optimization and anisotropy sensitivity study for abrasive belt grinding of nickel-based single-crystal superalloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nickel-based single-crystal superalloys (SXs) are used as materials for aero- and industrial gas turbine blades due to their superior high-temperature strength. However, SXs have low thermal conductivity, high hardness, and high working hardening, which significantly increase the machining difficulty. Improving machining performance has been a critical aspect that influences functional performance, including the fatigue life of the blades. In this study, preliminary comparative tests were performed for abrasive belt grinding of SXs to obtain better performance in terms of surface roughness (Ra), material removal rate (MRR) and abrasive belt wear rate (Bw). Two empirical models of the process parameters of abrasive belt grinding were established using response surface methodology (RSM), and the influences of belt speed (Vs), feed speed (Vw), and normal grinding force (Fn) on Ra and MRR were analysed. The Ra and MRR were optimized with multiple responses to balance the grinding quality and efficiency based on the desirability function method. Both the percentage error of the experiments and model prediction error are within a reasonable range of 5%. In particular, three typical crystal planes ((001), (110), and (111)) were prepared and used to study the grinding performance from the perspective of anisotropy sensitivity.
Rocznik
Strony
584--602
Opis fizyczny
Bibliogr. 47 poz., fot., rys., wykr.
Twórcy
autor
  • College of Mechanical and Vehicle Engineering, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
  • State Key Laboratory of Mechanical Transmissions, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
autor
  • College of Mechanical and Vehicle Engineering, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
  • College of Mechanical and Vehicle Engineering, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
  • College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
autor
  • College of Mechanical and Vehicle Engineering, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
  • State Key Laboratory of Mechanical Transmissions, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
autor
  • College of Mechanical and Vehicle Engineering, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
  • State Key Laboratory of Mechanical Transmissions, Chongqing University, No. 174, Shazhengjie, Chongqing 400044, China
Bibliografia
  • [1] A Thakur S Gangopadhyay 2016 State-of-the-art in surface integrity in machining of nickel-based superalloys Int J Mach Tools Manuf 100 25 54 https:// doi.org/10.1016/j.ijmachtools.2015.10.001.
  • [2] P Caron T Khan 1999 Evolution of Ni-based superalloys for single crystal gas turbine blade applications Aerosp Sci Technol 3 513 523 https://doi.org/10.1016/S1270-9638(99)00108-X.
  • [3] EO Ezugwu 2005 Key improvements in the machining of difficult-to-cut aerospace superalloys Int J Mach Tools Manuf 451353 1367 https://doi.org/10.1016/j.ijmachtools.2005.02.003.
  • [4] Q Zeng G Liu L Liu Y Qin 2015 Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity Proc Inst Mech Eng Part B-J Eng Manuf 229 238 250. https://doi.org/10.1177/0954405414526384.
  • [5] Q Miao W Ding W Kuang C Yang 2020 Comparison on grindability and surface integrity in creep feed grinding of GH4169, K403, DZ408 and DD6 nickel-based superalloys J Manuf Process 49 175 186 https://doi.org/10.1016/j.jmapro.2019.11.027.
  • [6] CF Yao QC Jin XC Huang DX Wu JX Ren DH Zhang 2012 Research on surface integrity of g-rinding Inconel718 Int J Adv Manuf Technol 65 1019 1030 https://doi.org/10.1007/s00170-012-4236-7.
  • [7] Q Liu X Chen N Gindy 2006 Assessment of Al2O3 and super-abrasive wheels in nickel-based alloy grinding Int J Adv Manuf Technol 33 940 951 https://doi.org/10.1007/s00170-006-0519-1.
  • [8] N Qian W Ding Y Zhu 2018 Comparative investigation on grindability of K4125 and Inconel718 nickel-based superalloys Int J Adv Manuf Technol 97 1649 1661 https://doi.org/10.1007/s00170-018-1993-y.
  • [9] ZW Du Y Chen K Zhou C Li 2015 Research on the electrolytic-magnetic abrasive finishing of ni-ckel-based superalloy GH4169 Int J Adv Manuf Technol 81 897 903 https:// doi.org/10.1007/s00170-015-7270-4.
  • [10] DR Unune M Marani Barzani SS Mohite HS Mali 2016 Fuzzy logic-based model for predicting material removal rate and average surface roughness of machined Nimonic 80A using abrasive-mixed electro-discharge diamond surface grinding Neural Comput Appl 29 647 662 https://doi.org/10.1007/s00521-016-2581-4.
  • [11] MK Sinha R Madarkar S Ghosh PV Rao 2017 Application of eco-friendly nanofluids during grin-ding of Inconel 718 through small quantity lubrication J Clean Prod 141 1359 1375 https://doi.org/10.1016/j.jclepro.2016.09.212.
  • [12] C Qu Y Lv Z Yang X Xu D Zhu S Yan 2019 An improved chip-thickness model for surface roughness prediction in robotic belt grinding considering the elastic state at contact wheel-work-piece interface Int J Adv Manuf Technol 104 3209 3217 https://doi.org/10.1007/s00170-019-04332-7.
  • [13] K Serpin S Mezghani ME Mansori 2015 Multiscale assessment of structured coated abrasive grits in belt finishing process Wear 332–333 780 787 https://doi.org/10.1016/j.wear.2015.01.054.
  • [14] W Wang F Salvatore J Rech J Li 2018 Comprehensive investigation on mechanisms of dry belt g-rinding on AISI52100 hard-ened steel Tribol Int 121 310 320 https:// doi.org/10.1016/j.tribo int.2018.01.019.
  • [15] L Zou Y Huang G Zhang X Cui 2019 Feasibility study of a flexible grinding method for precisi-on machining of the TiAl-based alloy Mater Manuf Process 34 1160 1168 https://doi.org/10.1080/10426914.2019.1628255.
  • [16] Z Li L Zou J Yin Y Huang 2020 Investigation of parametric control method and model in abrasive belt grinding of nickel-based superalloy blade Int J Adv Manuf Technol 108 3301 3311 https://doi.org/10.1007/s00170-020-05607-0.
  • [17] J Wang J Xu X Wang X Zhang X Song X Chen 2018 A comprehensive study on surface integrity of nickel-based superalloy Inconel 718 under robotic belt grinding Mater Manuf Process 3461 69 https://doi.org/10.1080/10426914.2018.1512137.
  • [18] Z Yang Y Chu X Xu H Huang D Zhu S Yan 2021 Prediction and analysis of material removal characteristics for robotic belt grinding based on single spherical abrasive grain model Int J Mech Sci https://doi.org/10.1016/j.ijmecsci.2020.106005.
  • [19] K Gao H Chen X Zhang X Ren J Chen X Chen 2019 A novel material removal prediction met-hod based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718 Int J Adv Manuf Technol 105 217 232 https://doi.org/10.1007/s00170-019-04170-7.
  • [20] V Pandiyan P Murugan T Tjahjowidodo W Caesarendra OM Manyar DJH Then 2019 In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using dee-plearning Robot Comput-Integr Manuf 57 477 487 https://doi.org/10.1016/j.rcim.2019.01.006.
  • [21] S Chen T Zhang Y Zou M Xiao 2019 Model predictive control of robotic grinding based on deep belief network Complexity 2019 1 12 https://doi.org/10.1155/2019/1891365.
  • [22] V Aggarwal SS Khangura RK Garg 2015 Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology Int J Adv Manuf Technol 79 31 47 https://doi.org/10.1007/s00170-015-6797-8.
  • [23] MS Reza M Saifuddin N Ahmed I Hasan JR Karmoker 2019 Development and optimization of acyclovir loaded mucoadhesive microspheres by box-behnken design Dhaka Univ J Pharm Sci 18 1 12 https://doi.org/10.3329/dujps.v18i1.41421.
  • [24] K-H Park G-D Yang DY Lee 2015 Tool wear analysis on coated and uncoated carbide tools in inconel machining Int J Precis Eng Manuf 16 1639 1645 https://doi.org/10.1007/s12541-015-0215-x.
  • [25] Q Li Y-D Gong Y Sun Y Liu C-X Liang 2017 Milling performance optimization of DD5 Ni-base-d single-crystal superalloy Int J Adv Manuf Technol 94 2875 2894 https://doi.org/10.1007/s00170-017-0999-1.
  • [26] M Gong L Zou H Li G Luo Y Huang 2020 Investigation on secondary self-sharpness performance of hollow-sphere abrasive grains in belt grinding of titanium alloy J Manuf Process 59 6875 https://doi.org/10.1016/j.jmapro.2020.09.030.
  • [27] JQ Wu Y Huang Z Huang 2010 The analysis of four-axis belt grinding for marine propeller B-lade Adv Mater Res 154–155 647653.
  • [28] K Song G Xiao S Chen S Li 2021 Analysis of thermal-mechanical causes of abrasive belt grindi-ng for titanium alloy Int J Adv Manuf Technol 113 3241 3260 https:// doi.org/10.1007/s00170-021-06795-z.
  • [29] K Görgülü A Ceylanoğlu 2008 Evaluation of continuous grinding tests on some marble and limestone units with silicon carbide and diamond type abrasives J Mater Process Technol 204 264 268 https://doi.org/10.1016/j.jmatprotec.2007.11.039.
  • [30] DC Montgomery 2017 Design and analysis of experiments John Wiley & Sons New York.
  • [31] D Zhu X Xu Z Yang K Zhuang S Yan H Ding 2018 Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments Tribol Int 120 93 98 https://doi.org/10.1016/j.triboint.2017.12.043.
  • [32] R Kuehl 1994 Design of experiments: statistical principles of research design and analysis Am Stat https://doi.org/10.2307/2684851.
  • [33] G Derringer R Suich 1980 Simultaneous optimization of several response variables J Qual Technol 12 214 219 https://doi.org/10.1080/00224065.1980.11980968.
  • [34] R Swiercz D Oniszczuk-Swiercz T Chmielewski 2019 Multi-response optimization of electrical discharge machining using the desirability function Micromachines. https://doi.org/10.3390/mi10010072.
  • [35] A Aggarwal H Singh P Kumar M Singh 2008 Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function J Mater Process Technol 205 42 50 https://doi.org/10.1016/j.jmatprotec.2007.11.105.
  • [36] D-H Lee I-J Jeong K-J Kim 2018 A desirability function method for optimizing mean and variability of multiple responses using a posterior preference articulation approach Qual Reliab Eng Int 34 360 376 https://doi.org/10.1002/qre.2258.
  • [37] D Zhu S Luo L Yang W Chen S Yan H Ding 2015 On energetic assessment of cutting mechani-sms in robot-assisted belt grinding of titanium alloys Tribol Int 90 55 59 https:// doi.org/10.1016/j.triboint.2015.04.004.
  • [38] R-j Cui Z-h Huang 2016 Microstructual evolution and stability of second generation single crystal nickel-based superalloy DD5 Trans Nonferrous Met Soc China 26 2079 2085 https:// doi.org/10.1016/s1003-6326(16)64323-6.
  • [39] C Ming G Yadong S Yao Q Shuoshuo L Yin Y Yuying 2018 Experimental study on grinding surface properties of nickel-based single crystal superalloy DD5 Int J Adv Manuf Technol 101 71 85 https://doi.org/10.1007/s00170-018-2839-3.
  • [40] Y Zhou Y Gong M Cai Z Zhu Q Gao X Wen 2016 Study on surface quality and subsurface recrystallization of nickel-based single-crystal superalloy in micro-grinding Int J Adv Manuf Technol 90 1749 1768 https://doi.org/10.1007/s00170-016-9401-y.
  • [41] Y Gong Y Zhou X Wen J Cheng Y Sun L Ma 2017 Experimental study on micro-grinding force and subsurface microstructure of nickel-based single crystal superalloy in micro grinding J Mech Sci Technol 31 3397 3410 https://doi.org/10.1007/s12206-017-0629-8.
  • [42] W Zhou J Tang W Shao 2020 Study on surface generation mechanism and roughness distribution in gear profile grinding Int J Mech Sci https://doi.org/10.1016/j.ijmecsci.2020.105921.
  • [43] C Wu B Li Y Liu SY Liang 2017 Surface roughness modeling for grinding of Silicon Carbide ce-ramics considering co-existence of brittleness and ductility Int J Mech Sci 133 167 177 https:// doi.org/10.1016/j.ijmecsci.2017.07.061.
  • [44] HL Wu Y Huang Z Huang GJ Cheng 2011 Experimental research on the abrasive belt grinding turbine blades material 1cr13 stainless steel Key Eng Mater 487 452 456.
  • [45] HA Razavi TR Kurfess S Danyluk 2003 Force control grinding of gamma titanium aluminide Int J Mach Tools Manuf https://doi.org/10.1016/S0890-6955(02)00113-X.
  • [46] B John B Gerald 2002 The mechanisms of chip formation in machining hardened steels J Manuf Sci Eng 124 528 535 https://doi.org/10.1115/1.1455643.
  • [47] FRN Nabarro 1997 Fifty-year study of the Peierls-Nabarro stress Mater Sci Eng A-Struct Mater Prop Microstruct Process 234–23667 76 https://doi.org/10.1016/S0921-5093(97)00184-6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3e270e1-8e5f-4e1f-8e36-06e5668a30c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.