Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article we present the Pickands theorem and his double sum method. We follow Piterbarg’s proof of this theorem. Since his proof relies on general lemmas, we present a complete proof of Pickands’ theorem using the Borell inequality and Slepian lemma. The original Pickands’ proof is rather complicated and is mixed with upcrossing probabilities for stationary Gaussian processes. We give a lower bound for Pickands constant. Moreover, we review equivalent definitions, simulations and bounds of Pickands constant.
Czasopismo
Rocznik
Tom
Strony
373--393
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Mathematics and Cybernetics, Wrocław University of Economics, 53-345 Wrocław, Poland
Bibliografia
- [1] R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer, New York 2007.
- [2] J. M. P. Albin and H. Choi, A new proof of an old result by Pickands, Electron. Commun. Probab. 15 (2010), pp. 339-345.
- [3] S. M. Berman, Sojourns and Extremes of Stochastic Processes, The Wadsworth & Brooks/Cole Statistics/Probability Series,Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove 1992.
- [4] C. E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilità (in Italian), Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali di Firenze 8 (1936), pp. 1-62.
- [5] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), pp. 207-216.
- [6] K. Burnecki and Z. Michna, Simulation of Pickands constant, Probab. Math. Statist. 22 (2002), pp. 193-199.
- [7] K. Dębicki, Ruin probability for Gaussian integrated processes, Stochastic Process. Appl. 98 (2002), pp. 151-174.
- [8] K. Dębicki, Some properties of generalized Pickands constants, Teor. Veroyatn. Primen. 50 (2) (2005), pp. 396-404.
- [9] K. Dębicki and E. Hashorva, On extremal index of max-stable stationary processes, this fascicle, pp. 299-317.
- [10] K. Dębicki and P. Kisowski, A note on upper estimates for Pickands constants, Statist. Probab. Lett. 78 (2008), pp. 2046-2051.
- [11] K. Dębicki and M. Mandjes, Open problems in Gaussian fluid queueing theory, Queueing Syst. 68 (2011), pp 267-273.
- [12] K. Dębicki, Z. Michna, and T. Rolski, Simulation of the asymptotic constant in some fluid models, Stoch. Models 19 (2003), pp. 407-423.
- [13] A. B. Dieker and B. Yakir, On asymptotic constants in the theory of extremes for Gaussian processes, Bernoulli 20 (3) (2014), pp. 1600-1619.
- [14] A. J. Harper, Pickands’ constant Hα does not equal 1/Γ(1/α), for small α, Bernoulli 23 (1) (2017), pp. 582-602.
- [15] J. Hüsler, Extremes of a Gaussian process and the constant Hα, Extremes 2 (1999), pp. 59-70.
- [16] J. Hüsler and V. I. Piterbarg, Extremes of a certain class of Gaussian processes, Stochastic Process. Appl. 83 (1999), pp. 257-271.
- [17] Z. Michna, On tail probabilities and first passage times for fractional Brownian motion, Math. Methods Oper. Res. 49 (1999), pp. 335-354.
- [18] J. Pickands III, Upcrossing probabilities for stationary Gaussian processes, Trans. Amer. Math. Soc. 145 (1969), pp. 51-73.
- [19] J. Pickands III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), pp. 75-86.
- [20] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., Vol. 148, AMS, Providence 1996.
- [21] C. Qualls and H. Watanabe, Asymptotic properties of Gaussian processes, Ann. Math. Statist. 43 (1972), pp. 580-596.
- [22] Q. Shao, Bounds and estimators of a basic constant in extreme value theory of Gaussian processes, Statist. Sinica 6 (1996), pp. 245-257.
- [23] D. Slepian, The one-sided barrier problem for the Gaussian noise, Bell Syst. Tech. J. 41 (1962), pp. 463-501.
Uwagi
To Professor Tomasz Rolski who has been dedicating his life to science.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3dfc147-f63c-45f3-83a2-d247ddfbc043