PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mostowe systemy identyfikacji obciążeń eksploatacyjnych - przegląd wiedzy

Identyfikatory
Warianty tytułu
EN
Bridge Weigh-in-Motion systems - state of the art
Języki publikacji
PL
Abstrakty
PL
W artykule dokonano przeglądu systemów identyfikacji obciążeń eksploatacyjnych typu Bridge Weigh-in-Motion. Omówiono podstawowe metody systemu identyfikacji pojazdów wraz z określeniem przeznaczenia, zalet oraz wad poszczególnych metod. Przedstawiono również klasyfikację algorytmów systemów identyfikacji nacisków pojazdów z uwzględnieniem dokładności wyników oraz z wyszczególnieniem indywidualnych cech charakterystycznych poszczególnych podejść.
EN
The article provides a review of Bridge Weigh-in-Motion systems for identifying operational loads. It discusses the basie methods of vehicle identification in the system, along with determining the purpose, advantages, and weaknesses of each method. The article also presents a classification of algorithms for vehicle pressure identification systems, considering the accuracy of results and highlighting the individual characteristic features of each approach.
Rocznik
Strony
346--353
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
  • Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
  • Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
Bibliografia
  • [1] Kula T.: Pojazdy przeciążone w ruchu drogowym - skala problemu. Nawierzchnie Drogowe 2015, 26-27 listopada 2015.
  • [2] Rys D.: Obciążenie dróg przez pojazdy ciężkie i ich wpływ na trwałość zmęczeniową konstrukcji nawierzchni podatnych i półsztywnych. Rozprawa doktorska. Politechnika Gdańska, 2015.
  • [3] Normann O.K., Hopkins R.C.: Weighing Vehicles In Motion. Highway Research Board, vol. 50, no. 221, 1952.
  • [4] Burnos P.: Ważenie pojazdów samochodowych w ruchu. Część 1: Oddziaływanie pojazdów przeciążonych na nawierzchnię. Drogownictwo, nr 6/2014, s. 192-195.
  • [5] Burnos P.: Ważenie pojazdów samochodowych w ruchu. Część 2: Rodzaje i charakterystyka systemów Weigh In Motion (WIM). Drogownictwo, nr 7-8/2014, s. 240-245.
  • [6] Burnos P.: Ważenie pojazdów samochodowych w ruchu. Część 3: Czujniki nacisku stosowane w systemach Weigh In Motion (WIM). Drogownictwo, nr 9/2014, s. 275-279.
  • [7] Burnos P.: Ważenie pojazdów samochodowych w ruchu. Część 4: Ocena dokładności systemów Weigh In Motion (WIM). Drogownictwo, nr 12/2014, s. 388-395.
  • [8] Moses F.: Weigh-In-Motion System Using Instrumented Bridges. Transportation Engineering Journal of ASCE, vo1.105, no. 3, p. 233-249, january 1979.
  • [9] Peters R.: AXWAY - a system to obtain vehicle axle weights. 12th ARRB Conference, Hobart, Hobart, TAS, Australia, vol. 12, august 1984.
  • [10] Peters R.: CULWAY - an unmanned and undetectable highway speed vehicle weighing system. 13th ARRB Conference, Australian Road Research Board, vol. 13, p. 70-83, january 1986.
  • [11] O'Brien E., Jehaes S., Jacob B.: Weigh-in-motion of road vehicles. Final report of the COST 323 Action (WIM-LOAD). Laboratoire Central des Ponts et Chausse'es, Paris 2002.
  • [12] O'Brien E., Žniderič A.: Weighing-in-motion of axles and vehicles for Europe (WAVE). Report ot work package 1.2: bridge WIM systems (B-WIM). Zavod za gradbeništvo Slovenije, Ljubljana 2001.
  • [13] Cardini A.J., DeWolf J.T.: Implementation of a Long-Term Bridge Weigh-In-Motion System for a Steel Girder Bridge in the Interstate Highway System. Journal of Bridge Engineering, vol. 14, no. 6, 2009, DOI: 10.1061/(ASCE)1084-0702(2009)14:6(418).
  • [14] Quilligan M.: Bridge weigh-in motion: development of a 2-D multi-vehicle algorithm. PhD dissertation - Structural Design and Bridge Division, Royal Institute of Technology, Stockholm 2003.
  • [15] Dempsey A.T., Jacob B., Carracilli J.: Orthotropic bridge weigh-in-motion for determining axle and gross vehicle weights. Second European Conference On Weigh-In-Motion of Road Vehicles, Portugal, p. 435-444, september 1998.
  • [16] Lydon M., Taylor S.E., Robinson D., Mufti A., Brien E.J.O.: Recent developments in bridge weigh in motion (B-WIM). J Civil Struct Health Monit, vol. 6, no. 1, p. 69-81, february 2016.
  • [17] Ojio T., Yamada K.: Bridge WIM by reaction force method. Proceedings of the 4th international WIM conference, Taipei, Taiwan, p. 97-108, february 2005.
  • [18] Kalin J., Žnidari A.: Practical implementation of Nothing-On-the-Road Bridge Weigh-In-Motion system. Slovenian National Building and Civil Engineering Institute. Vol. 207, p. 11.
  • [19] Chatterjee P., O'Brien E.J., Li Y., González A.: Wavelet domain analysis for identification of vehicle axles from bridge measurements. Computers & Structures, vol. 84, no. 28, p. 1792-1801, september 2006.
  • [20] Law S.S., Wu S.Q., Shi Z.Y.: Moving Load and Prestress Identification Using Wavelet-Based Method. Journal of Applied Mechanics, vol. 75, no. 2, march 2008.
  • [21] Yu Y., Cai C., Deng L.: Vehicle axle identification using wavelet analysis of bridge global responses. Journal of Vibration and Control, vol. 23, no. 17, october 2017. DOI: 10.1177/1077546315623147.
  • [22] Wu Y., Deng L., He W.: BwimNet: A Novel Method for Identifying Moving Vehicles Utilizing a Modified Encoder-Decoder Architecture. Sensors, 2020. DOI: 10.3390/s20240000.
  • [23] Shek S.C.K., Butterfield J., Murphy A., Spence I.: Current State of the Art in Object Detection for Autonomous Systems, IMC37 - 37th International Manufacturing Conference, Athlone, Ireland, 2021.
  • [24] Li C.- Y., Wang C., Yang Q.-X., Qi T-Y.: Identification of Vehicle Loads on an Orthotropic Deck Steel Box Beam Bridge Based on Optimal Combined Strain Influence Lines. Applied Sciences, vol. 12, no. 19, p. 9848, september 2022.
  • [25] Dunne D., O'Brien E.J., Basu B., Gonzalez A., González A.: Bridge WIM systems with Nothing On the Road (NOR). Proceedings of the 4th international WIM conference, Taipei, Taiwan, p. 109-117, february 2005.
  • [26] Kim S., Lee J., Park M.-S., Jo B.-W.: Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System. Sensors, vol. 9, no. 10, p. 7943-7956, october 2009. DOI: 10.3390/s91007943.
  • [27] Lorenzen S.R., Riedel H., Rupp M.M., Schmeiser L., Berthold H., Firus A., Schneider J.: Virtual Axle Detector Based on Analysis of Bridge Acceleration Measurements by Fully Convolutional Network. Sensors, vol. 22, no. 22, p. 8963, november 2022. DOI: 10.3390/s22228963.
  • [28] Kawakatsu T., Aihara K., Takasu A., Adachi J., Wang H., Nagayama T.: Fully-Neural Approach to Vehicle Weighing and Strain Prediction on Bridges Using Wireless Accelerometers. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, june 2021. DOI: 10.11091/ICASSP39728.2021.9414433.
  • [29] Zhu Y., Sekiya H., Okalani T., Yoshida I., Hirano S.: Real-time vehicle identification using two-step LSTM method for acceleration-based bridge weigh-in-motion system. J Civil Struct Health Monit, vol. 12, no. 3, p. 689-703, june 2022. DOI: 10.1007/s13349-022-00576-2.
  • [30] Znidaric A., Lavroc I., Kalin J.: Using strips to mitigate the multiplepresence problem of BWIM systems. Proceedings of the 6th international WIM conference, june 2012.
  • [31] Zhao H., Uddin N., O'Brien E.J., Shao X., Zhu P.: Identification of Vehicular Axle Weights with a Bridge Weigh-in-Motion System Considering Transverse Distribution of Wheel Loads. J. Bridge Eng., vol. 19, no. 3, march 2014.
  • [32] Tikhonov A., Arsenin V.Y.: Solutions of ill-posed problems. SIAM Review, vol. 21, no. 2 1977. DOI: 10.1137/1021044.
  • [33] Ojio T., Yamada K.: Bridge weigh-in-motion systems using stringers of plate girder bridges. Proceedings of the 3rd international WIM conference, may 2002.
  • [34] O'Connor C., Chan T.H.T.: Dynamic wheel loads from bridge strains. Journal of Structural Engineering-asce, vol. 114, no. 8, p. 1703-1723, september 1988.
  • [35] Chan T.H.T., Law S.-S., Law S.S., Yung T.H., Yuan X.R.: An interpretive method for moving force identification. Journal of Sound and Vibration, vol. 219, no. 3, p. 504-524, 1999.
  • [36] Law S.-S., Law S.S., Chan T.H.T., Zeng Q.H.: Moving force identification: A time domain method. Journal of Sound and Vibration, vol. 201, no. 1, p. 1-22, 1997.
  • [37] Law S.S., Chan T.H.T., Zeng Q.H.: Moving Force Identification - A Frequency and Time Domains Analysis. Journal of Dynamic Systems, Measurement, and Control, vol. 121, no. 3, p. 394-401, september 1999.
  • [38] Rowley C., Gonzalez A., Obrien E., Žnidarič A.: Comparison of conventional and regularized bridge weigh-in-motion algorithms. Proceedings of the International Conference on Heavy Vehicles. Paris, p. 221-230, 2008.
  • [39] Deng L., Cai C.S.: Identification of Dynamic Vehicular Axle Loads: Theory and Simulations. Journal of Vibration and Control, vol. 16, no. 14, p. 2167-2194, 2010.
  • [40] Deng L., Cai C.S.: Identification of Dynamic Vehicular Axle Loads: Demonstration by a Field Study. Journal of Vibration and Control, vol. 17, no. 2, p. 183-195, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3d6e64e-8f26-464a-9cad-64833be3beb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.