PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of DQE as a quantitative assessment of detectors in digital mammography: Measurements and calculation in practice

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Advances in digital detector technology and methods of image presentation in digital mammography now offer the possibility of implementing mathematical assessment methods to quantitative image analysis. The aim of this work was to develop new software to simplify the application of the existing international standard for DQE in digital mammography and show in detail how it can be applied, using a Siemens Mammomat Inspiration as a model. Material and methods: Consistent with the IEC standard a 2 mm Al filter at the tube exit and images in DICOM format as raw data, without applying any additional post-processing were used. Measurements were performed for W/Rh anode/filter combination and different tube voltage values (26 ÷ 34 kV) without any anti-scatter grid. To verify new software doses ranging from 20-600 μGy were used in measurements. Exposure (air kerma) was measured using a calibrated radiation meter (Piranha Black 457, RTI Electronics AB, Sweden). MTF was determined, using an edge test device constructed specifically for this work. Results: It has been demonstrated that with the new software the DQE can be measured with the accuracy required by the international standard IEC 62220-1-2. DQE has been presented as a function of spatial frequency for W/Rh anode/filter combination and different tube voltage. Conclusions: New software was used successfully to analyze image quality parameters for the Siemens Mammomat Inspiration detector. This was done on the basis of an internationally accepted methodology. In the next step, mammographs with different detector types can be compared.
Rocznik
Strony
223--232
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Particle Acceleration Physics and Technology Division, National Centre for Nuclear Research (NCNR), Poland
  • Particle Acceleration Physics and Technology Division, National Centre for Nuclear Research (NCNR), Poland
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology (MSCNRIO), Poland
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology (MSCNRIO), Poland
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology (MSCNRIO), Poland
Bibliografia
  • 1. Narodowy Program Zwalczania Chorób Nowotworowych. http://profilaktykaraka.coi.waw.pl/, access: February 2020 [in Polish]
  • 2. Didkowska J, Wojciechowska U. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy. http://onkologia.org.pl/k/epidemiologia/, access: April 2020 [in Polish]
  • 3. Dz.U. 2017 poz. 884. Obwieszczenie Ministra Zdrowia z dnia 3 kwietnia 2017 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Zdrowia w sprawie warunków bezpiecznego stosowania promieniowania jonizującego dla wszystkich rodzajów ekspozycji medycznej [in Polish]
  • 4. American College of Radiology. Mammography Quality Control Manual. 1999
  • 5. Huda W, Sajewicz AM, Ogden KM, Scalzetti EM, Dance DR. How Good Is the ACR Accreditation Phantom for Assessing Image Quality in Digital Mammography. Acad Radiol. 2002;9(7):764–772. https://doi.org/10.1016/S1076-6332(03)80345-8
  • 6. Fabiszewska E, Grabska I, Pasicz K. The threshold contrast thickness evaluated with different CDMAM phantoms and software. Nukleonika. 2016;61(1):53-59. https://doi.org/10.1515/nuka-2016-0004
  • 7. Fujita H, Tsai DY, Itoh T, et al. A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imaging. 1992;11(1):34-39. https://doi.org/10.1109/42.126908
  • 8. Hoheisel M, Batz L, Mertelmeier T, Giersch J, Korn A. Modulation transfer function of a selenium-based digital mammography system. IEEE Symposium Conference Record Nuclear Science 2004, Rome, 2004;6:3589-3593. https://doi.org/10.1109/NSSMIC.2004.1466660
  • 9. Carton AK, Vandenbroucke D, Struye L, et al. Validation of MTF measurement for digital mammography quality control. Med Phys. 2005;32(6):1684-1695. https://doi.org/10.1118/1.1921667
  • 10. Samei E, Ranger NT, Dobbins JT 3rd, Chen Y. Intercomparison of methods for image quality characterization. I. Modulation transfer function. Med Phys. 2006;33(5):1454-1465. https://doi.org/10.1118/1.2188816
  • 11. Narváez M, Graffigna JP, Gomez ME, Romo R. Application of Oversampling to obtain the MTF of Digital Radiology Equipment. J Phys: Conf Ser. 2016;705:012057. https://doi.org/10.1088/1742-6596/705/1/012057
  • 12. Williams MB, Mangiafico PA, Simoni PU. Noise power spectra of images from digital mammography detectors. Med Phys. 1999;26:1279-1293. https://doi.org/10.1118/1.598623
  • 13. García-Mollá R, Linares R, Ayala R. Study of DQE dependence with beam quality on GE Essential mammography flat panel. Journal of Applied Clinical Medical Physics. 2011;12(1). https://doi.org/10.1120/jacmp.v12i1.3176
  • 14. Ortenzia O, D’Alessio A, Noferini L, Ghetti C. Characterization of two CT systems using a channelized hotelling observer and NPS metric. Rad Prot Dos. 2020;189(2):224-233. https://doi.org/10.1093/rpd/ncaa034
  • 15. Dobbins JT 3rd, Ergun DL, Rutz L, Hinshaw DA, Blume H. Clark DC, DQE(f) of four generations of computed radiography acquisition devices. Med Phys. 1995;22:1581-1593. https://doi.org/10.1118/1.597627
  • 16. Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003;30(4):608-622. https://doi.org/10.1118/1.1561285
  • 17. Marshall NW. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems. Phys Med Biol. 2007;52:5545. https://doi.org/10.1088/0031-9155/52/18/006
  • 18. Marshall NW. Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems. Phys. Med. Biol. 2009; 54 2845, https://doi.org/10.1088/0031-9155/54/9/017
  • 19. Samei E, Murphy S, Christianson, O. DQE of wireless digital detectors: Comparative performance with differing filtration schemes. Med Phys. 2013;40:081910. https://doi.org/10.1118/1.4813298
  • 20. Marshall NW, van Ongeval C, Bosmans H. Performance evaluation of a retrofit digital detector-based mammography system. Phys Med. 2016;32(2):312-322. https://doi.org/10.1016/j.ejmp.2016.01.002
  • 21. Borg M. Application of the European Protocol in the evaluation of digital mammography units with tungsten target tubes. Rad Prot Dos. 2019;184(4):507-518. https://doi.org/10.1093/rpd/ncz044
  • 22. International Electrotechnical Commission. Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1-2: Determination of the detective quantum efficiency - Detectors used in mammography. IEC 62220-1-2:2007
  • 23. Williams L. The Optical Transfer Function of Imaging Systems. Institute of Physics. Bristol. 1999
  • 24. Viallefont-Robinet F, Helder D, Fraisse R, et alS. Comparison of MTF measurements using edge method: towards reference data set. Opt Express. 2018;26:33625-33648. https://doi.org/10.1364/OE.26.033625
  • 25. Greer PB, Van Doorn T. Evaluation of an algorithm for the assessment of the MTF using an edge method. Med Phys. 2000;27:2048-2059. https://doi.org/10.1118/1.1288682
  • 26. Dobbins JT 3rd, Samei E, Ranger NT, Chen Y. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys. 2006;33(5):1466-1475. https://doi.org/10.1118/1.2188819
  • 27. Siemens Healthcare GmbH. Online tool for the simulation of X-ray Spectra. https://www.oem-products.siemens-healthineers.com/xray-spectra-simulation. access: april 2020
  • 28. Joint Committee for Guides in Metrology. Evaluation of the measurement data - Guide to the expression of uncertainty in measurement (GUM), 2008
  • 29. Buhr E, Günther-Kohfahl S, Neitzel U. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. Med Phys. 2003;30:2323-31. https://doi.org/10.1118/1.1598673
  • 30. Illers H, Buhr E, Hoeschen C. Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 62220-1. Rad Prot Dos. 2005;114:39-44. https://doi.org/10.1093/rpd/nch507
  • 31. Monnin P, Gutierrez D, Bulling S, Guntern D, Verdun FR. A comparison of the performance of digital mammography systems. Med Phys. 2007;34(3):906-914. https://doi.org/10.1118/1.2432072
  • 32. Oborska - Kumaszyńska D, Wiśniewska-Kubka S. Ocena ilościowa parametrów cyfrowych detektorów radiologicznych obrazowania diagnostycznego - cz.2. Inżynier i Fizyk Medyczny. 2013;2(1):25-31.
  • 33. Oberhofer N, Fracchetti A, Nassivera E, Valentini A, Moroder E. Comparison of Two Novel FFDM Systems with Different a-Se Detector Technology: Physical Characterization and Phantom Contrast Detail Evaluation in Clinical Conditions. In: Martí J., Oliver A., Freixenet J., Martí R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_62
  • 34. Hoheisel M, Batz L, Mertelmeier T, Giersch J, Korn A. Modulation transfer function of a selenium-based digital mammography system. IEEE Transactions on Nuclear Science. 2006;53(3):1118-1122. https://doi.org/10.1109/TNS.2006.874953
  • 35. Greiter MB, Hoeschen Ch. Mobile measurement setup according to IEC 62220-1-2 for DQE determination on digital mammography systems. Proc SPIE 7622, Medical Imaging 2010: Physics of Medical Imaging, 76224P. https://doi.org/10.1117/12.844196
  • 36. Samei E, Ranger N, Mackenzie A, Honey I, Dobbins J, Ravin C, Detector or System? Extending the Concept of Detective Quantum Efficiency to Characterize the Performance of Digital Radiographic Imaging Systems. Radiology. 2009;249:926-37. https://doi.org/10.1148/radiol.2492071734
  • 37. Samei E, Ranger NT, MacKenzie A, Honey ID, Dobbins JT 3rd, Ravin CE. Effective DQE (eDQE) and speed of digital radiographic systems: an experimental methodology. Med Phys. 2009;36(8):3806-17. https://doi.org/10.1088/1361-6560/aaa307
  • 38. Salvagnini E, Bosmans H, Struelens L, Marshall NW, Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) for system optimization purposes in digital mammography. Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83130H. https://doi.org/10.1117/12.911193
  • 39. Wood TJ, Moore CS, Saunderson JR, Beavis AW, Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems. Phys Med Biol. 2018;39(2):025025. https://doi.org/10.1088/1361-6560/aaa307
  • 40. Bor D, Guven A, Yusuf AR, et al. A modified formulation of eDQE for digital radiographic imaging. Rad Phys Chem. 2019;156:614. https://doi.org/10.1016/j.radphyschem.2018.10.010
  • 41. Fabiszewska E, Wysocka-Rabin A, Dobrzyńska M, Skrzyński W, Pasicz K. Application of DQE for quantitative assessment of detectors to estimate AEC efficiency in digital mammography. Pol J Med Phys Eng. 2021;27(1):51-56. https://doi.org/10.2478/pjmpe-2021-0007
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3cfe966-ca7c-41b1-aace-63ea5831a279
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.