PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and Curing of Allyl Urethane NIMMO-THF Copolyether with Three Functional Groups as a Potential Energetic Binder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A tri-functional NIMMO-THF copolyether (T-NT) was synthesized by polymerization of 3-nitratomethyl-3-methyloxetane (NIMMO) and tetrahydrofuran (THF) in the presence of trimethylolpropane and catalyzed by BF3·OEt2. The allyl urethane NIMMO-THF copolyether with three functional groups (AUT-NT) was synthesized from tri-functional NIMMO-THF copolyether and allyl isocyanate. The polymer was characterized by FT-IR, 1H NMR, and 13C NMR. Furthermore, an elastomer that was prepared from allyl urethane NIMMO-THF copolyether with three functional groups and trimethylisophthalodinitrile oxide (TINO) had satisfactory mechanical properties and good thermal stability. The elastomer is expected to be used in composite solid propellants and polymer-bonded explosives (PBX).
Słowa kluczowe
Rocznik
Strony
141--163
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
autor
  • School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
Bibliografia
  • [1] Krishnan, S.P.; Ayyaswamy, K.; Nayak, S.K. Hydroxy Terminated Polybutadiene: Chemical Modifications and Applications. J. Macromol. Sci., Part A: Pure Appl. Chem. 2013, 50(1): 128-138.
  • [2] Haska, S.B.; Bayramli, E.; Pekel, F.; Özkar, S. Mechanical Properties of HTPBIPDI-based Elastomers. J. Appl. Polym. Sci. 1997, 64(12): 2347-2354.
  • [3] Sekkar, V.; Gopalakrishnan, S.; Ambika Devi, K. Studies on Allophanate-Urethane Networks Based on Hydroxyl Terminated Polybutadiene: Effect of Isocyanate Type on the Network Characteristics. Eur. Polym. J. 2003, 39(6): 1281-1290.
  • [4] Mao, K.; Xia, M.; Luo, Y. Thermal and Mechanical Properties of Two Kinds of Hydroxyl-terminated Polyether Prepolymers and the Corresponding Polyurethane Elastomers. J. Elastomers Plast. 2016, 48(6): 546-560.
  • [5] Fainleib, A.M.; Hourston, D.J.; Grigoryeva, O.P.; Shantalii, T.A.; Sergeeva, L.M., Structure Development in Aromatic Polycyanurate Networks Modified with Hydroxyl-terminated Polyethers. Polymer 2001, 42(20): 8361-8372.
  • [6] Kim, H.; Lim, C.; Hong, S. Gas Permeation Properties of Organic-Inorganic Hybrid Membranes Prepared from Hydroxyl-terminated Polyether and 3-Isocyanatopropyltriethoxysilane. J. Sol-Gel Sci. Technol. 2005, 36(2): 213-221.
  • [7] Selim, K.; Özkar, S.; Yilmaz, L. Thermal Characterization of Glycidyl Azide Polymer (GAP) and GAP-based Binders for Composite Propellants. J. Appl. Polym. Sci. 2015, 77(3): 538-546.
  • [8] Nazare, A.N.; Asthana, S.N.; Singh, H. Glycidyl Azide Polymer (GAP) – an Energetic Component of Advanced Solid Rocket Propellants – a Review. J. Energ. Mater. 1992, 10(1): 43-63.
  • [9] Kasikçi, H.; Pekel, F.; Özkar, S. Curing Characteristics of Glycidyl Azide Polymerbased Binders. J. Appl. Polym. Sci. 2015, 80(1): 65-70.
  • [10] Frankel, M.B.; Grant, L.R.; Flanagan, J.E. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8(3): 560-563.
  • [11] Murali Mohan, Y.; Mohana Raju, K.; Sreedhar, B. Synthesis and Characterization of Glycidyl Azide Polymer with Enhanced Azide Content. Int. J. Polym. Mater. 2006, 55(6): 441-455.
  • [12] Kempa, T.J.; Barton, Z.M.; Cunliffe, A.V. Mechanism of the Thermal Degradation of Prepolymeric Poly(3-nitratomethyl-3-methyloxetane). Polymer 1999, 40(1): 65-93.
  • [13] Ahmad, S.R.; Russell, D.A.; Golding, P. Laser-induced Deflagration of Unconfined HMX – the Effect of Energetic Binders. Propellants, Explos., Pyrotech. 2010, 34(6):513-519.
  • [14] Liao, L.-Q.; Wei, H.-J.; Li, J.-Z.; Fan, X.-Z.; Zheng, Y.; Ji, Y.-P.; Fu, X.-L.; Zhang, Y.-J.; Liu, F.-L. Compatibility of PNIMMO with Some Energetic Materials. J. Therm. Anal. Calorim. 2012, 109(3): 1571-1576.
  • [15] Shee, S.K.; Shah, P.N.; Athar, J.; Dey, A.; Soman, R.R.; Sikder, A.K.; Pawar, S.; Banerjee, S. Understanding the Compatibility of the Energetic Binder PolyNIMMO with Energetic Plasticizers: Experimental and DFT Studies. Propellants, Explos., Pyrotech. 2017, 42(2): 167-174.
  • [16] Zhang, Z.; Wang, G.; Wang, Z.; Zhang, Y.; Ge, Z.; Luo, Y. Synthesis and Characterization of Novel Energetic Thermoplastic Elastomers Based on Glycidyl Azide Polymer (GAP) with Bonding Functions. Polym. Bull. 2015, 72(8): 1835-1847.
  • [17] Colclough, M.E.; Desai, H.; Millar, R.W.; Paul, N.C.; Stewart, M.J.; Golding, P. Energetic Polymers as Binders in Composite Propellants and Explosives. Polym. Adv. Technol. 1994, 5(9): 554-560.
  • [18] Akhavan, J.; Kronfli, E.; Waring, S.C. Energetic Polymer Subjected to High Energy Radiation. Polymer 2004, 45(7): 2119-2126.
  • [19] Hsiue, H.J.; Liu, Y.L.; Chiu, Y.S. Tetrahydrofuran and 3,3-Bis(chloromethyl)oxetane Triblock Copolymers Synthesized by Two-end Living Cationic Polymerization. J. Polym. Sci., Part A: Polym. Chem. 1993, 31(13): 3371-3376.
  • [20] Liu, Y.L.; Hsiue, H.J.; Chiu, Y.S. Study on Polymerization Mechanism of 3-Nitratomethyl-3’-methyloxetane and 3-Azidomethyl-3’-methyloxetane and the Synthesis of Their Respective Triblock Copolymers with Tetrahydrofuran. J. Polym. Sci., Part A: Polym. Chem. 1995, 33(10): 1067-1613.
  • [21] Ahmad, N.; Khan, M.B.; Ma, X.; Ul-Haq, N. The Influence of Cross-linking/Chain Extension Structures on Mechanical Properties of HTPB-based Polyurethane Elastomers. Arabian J. Sci. Eng. 2014, 39(1): 43-51.
  • [22] Hailu, K.; Guthausen, G.; Becker, W.; König, A.; Bendfeld, A.; Geissler, E. In-situ Characterization of the Cure Reaction of HTPB and IPDI by Simultaneous NMR and IR Measurements. Polym. Test. 2010, 29(4): 513-519.
  • [23] Villar, L.D.; Cicaglioni, T.; Diniz, M.F.; Takahashi, M.F.K.; Rezende, L.C. Thermal Aging of HTPB/IPDI-based Polyurethane as a Function of NCO/OH Ratio. Materials Research 2011, 14(3): 372-375.
  • [24] Panicker, S.S.; Ninan, K.N. Studies on Functionality Distribution of Extractable Sol from HTPB-isocyanate Gumstock. J. Appl. Polym. Sci. 1995, 56(13): 1797-1804.
  • [25] Wingborg, N. Increasing the Tensile Strength of HTPB with Different Isocyanates and Chain Extenders. Polym. Test. 2002, 21(3): 283-287.
  • [26] Keskin, S.; Özkar, S. Kinetics of Polyurethane Formation between Glycidyl Azide Polymer and a Triisocyanate. J. Appl. Polym Sci. 2001, 81(4): 918-923.
  • [27] Wang, X.; Li, P.; Lu, X; Mo, H.; Xu, M; Liu, N.; Shu, Y. Synthesis and Curing of AUT-PNIMMO with Three Functional Groups. Polym-Korea. 2019, 43(4): 503-511.
  • [28] Hagen, T.H.; Jensen, T.L.; Unneberg, E.; Stenstrøm, Y.H.; Kristensen, T.E. Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate-Free, Synchronous Dual, and Sequential Dual Curing Systems. Propellants, Explos., Pyrotech. 2014, 40(2): 275-284.
  • [29] Sekkar, V.; Ambika Devi, K.; Ninan, K.N. Rheo-kinetic Evaluation on the Formation of Urethane Networks Based on Hydroxyl-terminated Polybutadiene. J. Appl. Polym. Sci. 2001, 79(10): 1869-1876.
  • [30] Keicher, T.; Kuglstatter, W.; Eisele, S.; Wetzel, T.; Krause, H. Isocyanate-free Curing of Glycidyl Azide Polymer (GAP) with Bis-propargyl-succinate (II). Propellants, Explos., Pyrotech. 2009, 34(3): 210-217.
  • [31] Reshmi, S.; Arunan, E.; Nair, C.P.R. Azide and Alkyne Terminated Polybutadiene Binders: Synthesis, Cross-linking, and Propellant Studies. Ind. Eng. Chem. Res. 2004, 53(43): 16612-16620.
  • [32] Li, H.; Zhao, F.; Yu, Q.; Wang, B.; Lu, X. A Comparison of Triazole Cross-linked Polymers based on Poly-AMMO and GAP: Mechanical Properties and Curing Kinetics. J. Appl. Polym. Sci. 2016, 133(17): 43341.
  • [33] Mohan, Y.M.; Raju, K.M. Synthesis and Characterization of HTPB-GAP Crosslinked Co-polymers. Des. Monomers Polym. 2005, 8(2): 159-175.
  • [34] Yu, Z.X.; Houk, K. Intramolecular 1,3-Dipolar Ene Reactions of Nitrile Oxides Occur by Stepwise 1,1-Cycloaddition/Retro-ene Mechanisms. J. Am. Chem. Soc. 2003, 125(2): 13825-13830.
  • [35] Choe, H.; Pham, T.T.; Lee, J.Y.; Latif, M.; Park, H.; Kang, Y.K.; Lee, J. Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (-)-11β-Hydroxycurvularin. J. Org. Chem. 2016, 81(2): 2612-2617.
  • [36] Takikawa, H.; Hikita, K.; Suzuki, K. Synthesis of Highly Functionalized Isoxazoles via Base-promoted Cyclocondensation of Stable Nitrile Oxides with Active Methylene Compounds. Synlett 2007, 14(2): 2252-2256.
  • [37] Kesornpun, C.; Aree, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, . Water-assisted Nitrile Oxide Cycloadditions: Synthesis of Isoxazoles and Stereoselective Syntheses of Isoxazolines and 1,2,4-Oxadiazoles. Angew. Chem., Int. Ed. 2016, 55(12): 3997-4001.
  • [38] Tsyganov, D.V.; Yakubov, A.P.; Belen’kii, L.I.; Krayushkin, M.M. Synthesis and Properties of Stable Aromatic Bis(Nitrile Oxides). Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 40(6): 1238-1243.
  • [39] Huffman, B.S.; Schultz, R.A.; Schlom, P.J. Novel Reagents for Heat-activated Polymer Crosslinking. Polym. Bull. 2001, 47(2): 159-166.
  • [40] Kotel’nikov, S.A.; Sukhinin, V.S.; Ermilov, A.S. Kinetics of Formation and Curing of Oligoether Urethane Allyl Ester. Russ. J. Appl. Chem. 2002, 75(3): 477-479.
  • [41] Desai, H.J.; Cunliffe, A.V.; Hamid, J.; Honey, P.J.; Stewart, M.J.; Amass, A.J. Synthesis and Characterization of α,ω-Hydroxy and Nitrato Telechelic Oligomers of 3,3-(Nitratomethyl) Methyl Oxetane (NIMMO) and Glycidyl Nitrate (GLYN). Polymer 1996, 37(15): 3461-3469.
  • [42] Xu, M.; Ge, Z.; Lu, X.; Mo, H.; Ji, Y.; Hu, H. Fluorinated Glycidyl Azide Polymers as Potential Energetic Binders. RSC Adv. 2017, 7(75): 47271-47278.
  • [43] Li, H.; Yu, Q.; Zhao, F.; Wang, B.; Li, N. Polytriazoles Based on Alkyne Terminated Polybutadiene with and without Urethane Segments: Morphology and Properties. J. Appl. Polym. Sci. 2017, 134(32): 45178.
  • [44] He, Y.; Xie, D.; Zhang, X. The Structure, Microphase-separated Morphology, and Property of Polyurethanes and Polyureas. J. Mater Sci. 2014, 49(21): 7339-7352.
  • [45] Yilgör, I.; Yilgör, E.; Wilkes, G.L. Critical Parameters in Designing Segmented Polyurethanes and Their Effect on Morphology and Properties: a Comprehensive Review. Polymer 2015, 58: A1-A36.
  • [46] Wang, G.; Guo, S.; Ding, Y. Synthesis, Morphology, and Properties of Polyurethanetriazoles by Click Chemistry. Macromol. Chem. Phys. 2015, 216(18): 1894-1904.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3cf4e6e-ae12-41cf-9715-75aa69dffba1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.