PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An extension of Klamka’s method to positive descriptor discrete-time linear systems with bounded inputs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The minimum energy control problem for the positive descriptor discrete-time linear systems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor discrete-time linear systems are given. Conditions for the existence of solution and procedure for computation of optimal input and the minimal value of the performance index is proposed and illustrated by a numerical example.
Rocznik
Strony
255--268
Opis fizyczny
Bibliogr. 33 poz., rys., wzory
Twórcy
autor
  • Białystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
  • [1] R. Bru, C. Coll and E. Sanchez: About positively discrete-time singular systems, in Mastorakis M.E. (Ed.), System and Control: Theory and Applications, World Scientific and Engineering Society, Athens (2000), 44-48.
  • [2] R. Bru, C. Coll, S. Romero-Vivo and E. Sanchez: Some problems about structural properties of positive descriptor systems, in Benvenuti A., de Santis A. and Farina L. (Eds.), Positive Systems, Lecture Notes in Control and Information Sciences, 294 (2003), Springer, Berlin, 233-240.
  • [3] S. L. Campbell, C. D. Meyer and N. J. Rose: Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAM Journal on Applied Mathematics, 31(3), (1976), 411-425.
  • [4] L. Dai: Singular Control Systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.
  • [5] M. Dodig and M. Stosic: Singular systems state feedbacks problems, Linear Algebra and Its Applications, 431(8), (2009), 1267-1292.
  • [6] G. R. Duan: Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
  • [7] M. M. Fahmy and J. O’Reill: Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control, 49(4), (1989), 1421-1431.
  • [8] L. Farina and S. Rinaldi: Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
  • [9] F. R. Gantmacher: The Theory of Matrices, Chelsea Pub. Comp., London, 1959.
  • [10] T. Kaczorek: An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs, Bull. Pol. Acad. Sci. Tech., 62(2), (2014), 227-231.
  • [11] T. Kaczorek: Descriptor positive discrete-time and continuous-time nonlinear systems, Proc. of SPIE, 9290 (2014), 1-11.
  • [12] T. Kaczorek: Linear Control Systems vol. 1, Research Studies Press, J. Wiley, New York, 1992.
  • [13] T. Kaczorek: Minimum energy control of descriptor positive discrete-time linear systems, COMPEL, 33(3), (2014), 976-988.
  • [14] T. Kaczorek: Minimum energy control of fractional descriptor positive discrete-time linear systems, Int. J. Appl.Math. Comput. Sci., 24(4), (2014), 735-743.
  • [15] T. Kaczorek: Minimum energy control of fractional positive continuous-time linear systems, Bull. Pol. Acad. Sci. Tech., 61(4), (2013), 803-807.
  • [16] T. Kaczorek: Minimum energy control of fractional positive discrete-time linear systems with bounded inputs, Archives of Control Sciences, 23(2), (2013), 205-211.
  • [17] T. Kaczorek: Minimum energy control of positive electrical circuits, Proc of 19th International Conference of Methods and Models in Automation and Robotics, 2-5 September, (2014), Międzyzdroje, Poland.
  • [18] T. Kaczorek: Minimum energy control of positive discrete-time linear systems with bounded inputs, Archives of Control Sciences, 23(2), (2013), 205-211.
  • [19] T. Kaczorek: Positive 1D and 2D Systems, Springer-Verlag, London, 2001.
  • [20] T. Kaczorek: Positivity and linearization of a class of nonlinear discretetime systems by state feedbacks, Logistyka, 6 (2014), 5078-5083.
  • [21] T. Kaczorek: Positive descriptor discrete-time linear systems, Problems of Nonlinear Analysis in Engineering Systems, 1(7), (1998), 38-54.
  • [22] T. Kaczorek: Positive linear systems consisting of n subsystems with different fractional orders, IEEE Trans. Circuits and Systems, 58(6), (2011), 1203-1210.
  • [23] T. Kaczorek: Positivity and stability of discrete-time nonlinear systems, Proc. of 2nd IEEE Intern. Conf. on Cybernetics CYBCONF, 24-26 June, (2015), Gdynia, Poland.
  • [24] T. Kaczorek: Positive singular discrete time linear systems, Bull. Pol. Acad. Techn. Sci., 45(4), (1997), 619-631.
  • [25] T. Kaczorek: Vectors and Matrices in Automation and Electrotechnics, WNT, Warszawa, 1998 (in Polish).
  • [26] T. Kaczorek, K. Borawski: Minimum energy control of descriptor discrete-time linear systems by the use of Weierstrass-Kronecker decomposition, Submitted to Archives of Control Sciences, 2016.
  • [27] T. Kaczorek and J. Klamka: Minimum energy control of 2D linear systems with variable coefficients, Int. J. of Control, 44(3), (1986), 645-650.
  • [28] J. Klamka: Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht, 1991.
  • [29] J. Klamka: Minimum energy control of 2D systems in Hilbert spaces, System Sciences, 9(1-2), (1983), 33-42.
  • [30] J. Klamka: Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Trans. Autom. Contr., 21(4), (1976), 594-595.
  • [31] V. Kucera, P. Zagalak: Fundamental theorem of state feedback for singular systems, Automatica, 24(5), (1988), 653-658.
  • [32] P. van Dooren: The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications, 27 (1979), 103-140.
  • [33] E. Virnik: Stability analysis of positive descriptor systems, Linear Algebra and Its Applications, 429(10), (2008), 2640-2659.
Uwagi
EN
This work was supported by National Science Centre in Poland under work No. 2014/13/B/ST7/03467.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3cc44c2-a5c0-48fd-af4c-b1b20c38d81b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.