PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modifications in aquaculture technology for increasing fishpond’s primary productivity in temperate climatic conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aquaculture plays a great role in producing foodstuffs, sustaining inland capture fisheries and providing employment. The key to future development in pond aquaculture is diversification of production technology, intensity, and function connected to increasing the environmental value of pond areas. New production systems involve a combination of intensive and extensive pond culture, increasing productivity and improving nutrient utilisation and fish species diversification. The most important principle of these systems is the possibility to use the wastes from intensive aquaculture as the input for extensive, environment-friendly fish production. These systems were proven to be profitable and sustainable in tropical and subtropical areas. However, for temperate climatic conditions, such data are scarce. For this reason, we decided to discuss modifications that, in our opinion, can be applied in an extensive part of the integrated intensive-extensive system in temperate climatic conditions in order to increase the overall productivity of the pond aquaculture.
Wydawca
Rocznik
Tom
Strony
210--219
Opis fizyczny
Bibliogr. 84 poz.
Twórcy
  • Polish Academy of Science, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland
  • Polish Academy of Science, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland
Bibliografia
  • ASADUZZAMAN M., RAHMAN M.M., AZIM M.E., ISLAM M.A., WAHAB M.A., VERDEGEM M.C.J., VERRETH J.A.J. 2010a. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture. Vol. 306 p. 127–136. DOI 10.1016/j.aquaculture.2010.05.035.
  • ASADUZZAMAN M., SHAH M.K., BEGUM A., WAHAB M.A., YI Y. 2006. Integrated cage-cum-pond culture systems with high-valued climbing perch (Anabas testudineus) in cages and low-valued carps in open ponds. Bangladesh Journal of Fisheries Research. Vol. 10(1) p. 25–34.
  • ASADUZZAMAN M., WAHAB M.A., VERDEGEM M.C.J., HUQUE S., SALAM M. A., AZIM M.E. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium resenbergii production in ponds. Aquaculture. Vol. 280 p. 117–123. DOI 10.1016/j.aquaculture.2008.04.019.
  • ASADUZZAMAN M., WAHAB M.A., VERDEGEM M.C.J., ADHIKARI R.K., RAHMAN S.M.S., AZIM M.E., VERRETH J.A.J. 2010b. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton based freshwater prawn farming systems. Aquaculture. Vol. 301 p. 37–46. DOI 10.1016/j.aquaculture.2010.01.025.
  • ATIA D.M., FAHMY, F.H., AHMED N.M., DORRAH H.T. 2012a. A new control and design of PEM fuel cell powered air diffused aeration system. Telkomnika. Vol. 10(2) p. 291–302. DOI 10.11591/telkomnika.v10i2.682.
  • ATIA D.M., FAHMY F.H., AHMED N.M., DORRAH H.T. 2012b. Design and control strategy of diffused air aeration system. International Journal of Electrical and Computer Engineering. Vol. 6(3) p. 385–389.
  • AVNIMELECH Y. 1999. Carbon and nitrogen ratio as a control element in aquaculture systems. Aquaculture. Vol. 176 p. 227–235. DOI 10.1016/S0044-8486(99)00085-X.
  • AVNIMELECH Y., KOCHBA M. 2009. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using N tracing. Aquaculture. Vol. 287 p. 163–168. DOI 10.1016/j.aquaculture.2008.10.009.
  • AVNIMELECH Y., WEBER B., HEPHER B., MILSTEIN A., ZORN M. 1986. Studies in circulated fish ponds: organic matter recycling and nitrogen transformation. Aquaculture and Fisheries Management Vol. 17 p. 231–242. DOI 10.1111/j.1365-2109.1986.tb00109.x.
  • AZIM M.E., LITTLE D.C. 2006. Intensifying aquaculture production through new approaches to manipulating natural food. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. Vol. 1. No. 062. DOI 10.1079/PAVSNNR20061062.
  • BHATNAGAR A., DEVI P. 2013. Water quality guidlanes for the management of pond fish culture. International Journal of Environmental Sciences. Vol. 3(6) p. 1980–2009. DOI 10.6088/ijes.2013030600019.
  • BOCEK A. (ed.) 1990. Introduction to polyculture of fish [online]. Water Harvesting and Aquaculture for Rural Development. International Center for Aquaculture and Aquatic Environments, Auburn University, USA. Available at: https://aurora.auburn.edu/bitstream/handle/11200/49645/English%20Intro%20to%20Polyculture%20of%20Fish.pdf?sequence=1&isAllowed=y.
  • BOSMA R.H., VERDEGEM M.C.J. 2011. Sustainable aquaculture in ponds: Principles, practices and limits. Livestock Science. Vol. 139 p. 58–68. DOI 10.1016/j.livsci.2011.03.017.
  • BOYD C.E. 1990. Water quality in ponds for aquaculture. Auburn, Alabama. Auburn University. ISBN 9780817305321 pp. 482.
  • BOYD C.E. 2018. Carbon-nitrogen ratios in pond fertilization and biofloc systems [online]. [Access 10.11.2021]. Available at: https://www.aquaculturealliance.org/advocate/carbon-nitrogen-ratios-in-pond-fertilization-and-biofloc-systems/.
  • BOYD C.E., MARTINSON D.J. 1984. Evaluation of propeller-aspirator-pump aerators. Aquaculture. Vol. 36(3) p. 283–292. DOI 10.1016/0044-8486(84)90243-6.
  • BRAHMCHARI R.K., KUMAR S., SINGH M.K. 2018. Interplay of substrate variation and biofilm formation in augmenting carp production. International Journal of Current Microbiology and Applied Sciences. Spec. Iss. 7 p. 3774–3789.
  • CHANG W. 1987. Fish culture in China. Fisheries. Vol. 12(3) p. 12–15.
  • CHEN R., DENG M., HE X., HOU J. 2017. Enhancing nitrate removal from freshwater pond by regulating carbon/nitrogen ratio. Frontiers in Microbiology. Vol. 8, 1712. DOI 10.3389/fmicb.2017.01712.
  • CHOPIN T. 2006. Book review: Cage aquaculture. 3rd ed. Ames (Iowa). Blackwell Publishing Professional. $114.99 (paper). viii + 368 p; ill.; index. ISBN 1–4051–0842–8. 2004. The Quarterly Review of Biology. Vol. 81(1). DOI 10.1086/503986.
  • CHOPIN T., ROBINSON S.M. 2004. Defining the appropriate regulatory and policy framework for the development of integrated multi-trophic aquaculture practices. Introduction to the workshop and positioning of the issues. Bulletin of the Aquaculture Association of Canada. No. 104-3 p. 7–10.
  • CHOWDHURY T., CHOWDHURY H., CHOWDHURY P., HASNAT A., BARUA B., ISLAM R. 2018. Analysis of a solar PV system for aeration systems in aquaculture [online]. International Conference on Mechanical, Industrial and Energy Engineering 2018. 23–24.12.2018, Khulna, Bangladesh p. 1–4. [Access 10.11.2021]. Available at: https://www.researchgate.net/publication/329988734_Analysis_of_a_Solar_PV_System_for_Aeration_System_in_Aquaculture.
  • CRAB R., AVNIMELECH Y., DEFOIRDT T., BOSSIER P., VERSTRAETE W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. Vol. 270(1–4) p. 1–14. DOI 10.1016/j.aquaculture.2007.05.006.
  • DIOS H.H.Y., CESAR S.A., MILLAN M.F., DY D.T. 2014. Presence of water flow increases biofilm periphyton formation on four artificial substrates. Journal of Science, Engineering and Technology. Vol. 2 p. 53–61.
  • EBELING J.M., TIMMONS M.B., BISOGNI J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquculture systems. Aquaculture. Vol. 257(1–4) p. 346–358. DOI 10.1016/j.aqua-culture.2006.03.019.
  • EDWARDS P. 1993. Environmental issues in integrated agriculture-aquaculture and wastewater-fed fish culture systems. In: Environmnent and aquaculture in developing countries. Eds. R. Pullin, H. Rosenthal, J. Maclean. ICLARM Conference Proceedings. No. 31 p. 139–170.
  • EEA 2019. Use of water resources, Indicator Assessment Prod-ID: IND-11-en, also known as: CSI 018, WAT 001 [online]. European Environment Agency. [Access 10.11.2021]. Available at: https://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources-3/assessment-4.
  • EPA/625/R-93/010. 1993. USEPA Manual: nitrogen control.. Washington DC. US Environmental Protection Agency.
  • Eurostat 2019. Fishery statistics [online]. [Access 10.11.2021]. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php/Fishery_statistics#Fisheries_production:_catches_and_aquaculture.
  • FOLKE C., KAUTSKY N., BERG H., JANSSON A., TROELL M. 1998. The ecological footprint concept for sustainable seafood production: A review. Ecological Applications. Vol. 8(1) p. S63-S71. DOI 10.1890/1051-0761(1998)8[S63:TEFCFS]2.0.CO;2.
  • FUGIMURA M.M.S., REIS FLOR H., MELO E.P., COSTA T.V., WASIELESKY W., OSHIRO L.M.Y. 2015. Brewery residues as a source of organic carbon in Litopenaeus schmitti white shrimp farms with BFT systems. Aquaculture International. Vol. 23(2) p. 509–522. DOI 10.1007/s10499-014-9832-0.
  • FULLNER G., GOTTSCHALK T., PFEIFER M. 2007. Experiments for the production of hybrid striped bass in in-pond circulation systems. Aquaculture International. Vol. 15 p. 241–248. DOI 10.1007/s10499-007-9093-2.
  • GAL D., KEREPECZKI E., KASAROS T., HEGEDUS R., PEKAR F., VARADI L. 2009. Water treatment of intensive aquaculture systems through wetlands and extensive fish ponds – Case studies in Hungary. In: SustainAqua – Integrated approach for a sustainable and healthy freshwater aquaculture. SustainAqua handbook – A handbook for sustainable aquaculture. Eds. L. Varadi, T. Bardocz, A. Oberdieck p. 24-40. [Access 10.11.2021]. Available at: https://haki.naik.hu/sites/default/files/uploads/2018-09/sustainaqua_handbook_en.pdf.
  • GAL D., KEREPECZKI E., KASAROS T., PEKAR F. 2010. Nutrient Rusing capacity of combined pond aquaculture system [online]. AACL Bioflux. Vol. 3(5) p. 373–377. [Access 10.11.2021]. Available at: http://www.bioflux.com.ro/docs/2010.3.373-377.pdf.
  • GAL D., KUCSKA B., KEREPECZKI E., GYALOG G. 2011. Feasibility of the sustainable freshwater cage culture in Hungary and Romania [online]. AACL Bioflux. Vol. 4(5) p. 598–605. [Access 10.11.2021]. Available at: http://www.bioflux.com.ro/docs/2011.4.598-605.pdf.
  • GAL D., PEKAR F., KOSAROS T., KEREPECZKI E. 2012. Potential of nutrient reutilization in combined intensive-extensive pond system. Aquaculture International. Vol. 21(4) p. 927–937. DOI 10.1007/s10499-012-9561-1.
  • GAL D., SZABO P., PEKAR F., VARADI L. 2003. Experiments on the nutrient removal and retention of a pond recirculation system. Hydrobiologia. Vol. 506–509(1) p. 767–772. DOI 10.1023/B:HYDR.0000008589.46810.af.
  • GIANGRANDE A., PIERRI C., ARDUINI D., BORGHESE J., LICCIANO M., TRANI R., CORRIERO G., BASILE G., CECERE E., PETROCELLI A., STABILI L., LONGO C. 2020. An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a southern Italian in-shore mariculture plant (Ionian Sea). Journal of Marine Science and Engineering. Vol. 8(10), 733. DOI 10.3390/jmse8100733.
  • GOU J., HONG C. U., DENG M., CHEN J., HOU J., LI D., HE X. 2019. Effect of carbon to nitrogen ratio on water quality and community structure evolution in suspended growth bioreactors through biofloc technology. Water. Vol. 11(8), 1640. DOI 10.3390/w11081640.
  • HAQUE M.R., ISLAM M.A., WAHAB M.A., HOQ E., RAHMAN M.M., AZIM M. E. 2016. Evaluation of production performance and profitability of hybrid red tilapia and genetically improved farmed tilapia (GIFT) strains in the carbon/nitrogen controlled periphyton-based (C/N-CP) on-farm prawn culture system in Bangladesh. Aquauclture Research. Vol. 4 p. 101–111. DOI 10.1016/j.aqrep.2016.07.004.
  • HASAN M.N., RAHMAN M.S., HOSEN M.F., BASHAR M.A. 2012. Effects of addition of tilapia on the abundance of periphyton in freshwater prawn culture with periphyton substrates. Journal of Bangladesh Agricultural University. Vol. 10(2) p. 313–324. DOI 10.3329/jbau.v10i2.14924.
  • HUSER B.J., BAJER P.G., CHIZINSKI C.J., SORENSEN P.W. 2016. Effects of common carp (Cyprinus carpio) on sediment mixing depth and mobile phosphorus mass in the active sediment layer of a shallow lake. Hydrobiologia. Vol. 763 p. 23–33. DOI 10.1007/s10750-015-2356-4.
  • JAEGER C., AUBIN J. 2018. Ecological intensification in multi-trophic aquaculture ponds: An experimental approach. Aquatic Living Resources. Vol. 31, 36 p. 1–12. DOI 10.1051/alr/2018021.
  • JHA S., RAI S., SHRESTHA M., DIANA J.S., MANDAL R.B., EGNA H. 2018. Production of periphyton to enhance yield in polyculture ponds with carps and small indigenous species. Aquaculture Reports. Vol. 9 p. 74–81. DOI 10.1016/j.agrep.2018.01.001.
  • KAUTSKY N., BERG H., FOLKE C., LARSSON J., TROELL M. 1997. Ecological footprint for assessment of resource use and development limitations in shrimp and tilapia aquaculture. Aquaculture Research. Vol. 28(10) p. 753–766. DOI 10.1046/j.1365-2109.1997.00940.x.
  • KESHAVANATH P., GANGADHAR B., RAMESH T.J., VAN ROOIJ J.M., BEVERIDGE M. C.M., BAIRD D.J., VERDEGEM M.C.J., VAN DAM A.A. 2001. Use of artificial substrate to enhance production of freshwater herbivorous fish in pond culture. Aquaculture Research. Vol. 32 p. 189–197.
  • KIBRIA A.S.M D., HAQUE M.M. 2018. Potentials of integrated multi-trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports. Vol. 11 p. 8–16. DOI 10.1016/j.aqrep.2018.05.004.
  • KLEITOU P., KLETOU D., DAVID J. 2018. Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture. Vol. 490 p. 136–148. DOI 10.1016/j.aquaculture.2018.02.035.
  • KOSAROS T., GAL D., PEKAR F., LAKATOS G. 2010. Effect of different treatments on the periphyton quantity and quality in experimental fishponds. World Academy of Science, Engineering and Technology. Vol. 40 p. 363–366.
  • KRAFT B., TEGETMEYER H.E., SHARMA R., KLOTZ M.G., FERDELMAN T.G., HETTICH R.L., GEELHOED J.S., STROUS M. 2014. The environmental controls that govern the end product of bacterial nitra te respiration. Science. Vol. 345 p. 676–679. DOI 10.1126/science.1254070.
  • KUMAR S.V., PANDEY P.K., KUMAR S., ANAND T., SURYAKUMAR B., BHUVANESWARI R. 2019. Effect of periphyton (aquamat installation) in the profitability of semi-intensive shrimp culture systems. Indian Journal of Economics and Development. Vol. 7(1) p. 1–9.
  • MILSTEIN A., AZIM M.E., WAHAB M.A., VERDEGEM M.C.J. 2003. The effects of periphyton, fish and fertilizer dose on biological processe affecting water quality in earthen fish ponds. Environmenal Biology of Fishes. Vol. 68(3) p. 247–260. DOI 10.1023/A:1027344417528.
  • NACA 1989. Integrated fish farming in China. NACA Technical Manual 7. A Word Food Day Publication of the Network of Aquaculture Centres in Asia and the Pacific. Bankok, Thailand pp. 278.
  • NUGROHO P.N.A., MUSTAGHFIRIN M.A., PAMBUDI D.S.A., IMRON A., AMINUDIN M.R., WULANDARI D.A. 2021. Optimization of paddle wheel aeration, a preliminary study of integrated smart aquaculture system. Journal of Physics: Conference Series. Vol. 1217, 012032. DOI 10.1088/1742-6596/2117/1/012032.
  • OLAH J., SINHA V.R.P., AYYAPPAN S., PURUSHOTHAMAN C.S., RADHEYSHYAM S. 1986. Primary production and fish yields in fish ponds under different management practices. Aquauclture. Vol. 58(1–2) p. 111–122. DOI 10.1016/0044-8486(86)90160-2.
  • PANIGHRANI A., SUNDARAM M., CHAKRAPANI S., RAJASEKAR S., DAYAL J.S., CHAVALI G. 2017. Effect of carbon and nitrogen ratio (C:N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system. Aquaculture Research. Vol. 50 p. 29–41. DOI 10.1111/are.13857.
  • PARKOS III J.J., SANTUCCI V.J. JR ., WAHL D.H. 2003. Effects of adult common carp (Cyprinus carpio) on multiple trophic levels in shallow mesocosms. Canadian Journal of Fisheries and Aquatic Sciences. Vol. 60 p. 182–192. DOI 10.1139/F03-011.
  • PILARCZYK M., GAL D., KOLEK L., INGLOT M., STONAWSKI B. 2016. IntegrAqua: Zintegrowany intensywno-ekstensywny system produkcji rybackiej [IntegrAqua: Integrated intensive-extensive aquaculture system]. PAN, Zakład Ichtiobiologii i Gospodarki Rybackiej w Gołyszu. ISBN 978-83-914025-5-9.
  • PRASETYANINGSARI I., SETIAWAN A., SETIAWAN A.A. 2013. Design optimization of solar powered aeration system for fish pond in Selman Regency, Yogyakarta by HOMER software. Energy Procedia. Vol. 32 p. 90–98. DOI 10.1016/j.egypro.2013.05.012.
  • QAYYUM A., AYUB M., TABINDA B. 2005. Effect of aeration on water quality, fish growth and survival in aquaculture ponds. Pakistan Journal of Zoology. Vol. 37(1) p. 75–80.
  • RAHMAN M.M., NAGELKERKE L.A.J., VERDEGEM M.C.J., WAHAB M.A., VERRETH J.A.J. 2008. Relationships among water quality, food resources, fish diet and fish growth in polyculture ponds: A multivariate approach. Aquaculture. Vol. 275 p. 108–115. DOI 10.1016/j.aquaculture.2008.01.027.
  • RAHMAN M.M., VARGA I., CHOWDHURY S.N. 1992. Manual on polyculture and integrated fish farming in Bangladesh. Topic 2: Fish production with polyculture [online]. FAO; BGD/87/045/91/11. [Access 10.11.2021]. Available at: www.fao.org/3/AC375E/AC375E03.htm.
  • RAHMAN M.M., VERDEGEM M.C.J. 2007. Multi-species fishpond and nutrient balance. In: Fishpond in farming systems. Eds. A.J. van der Zijp, J.A.J. Verreth, L.Q. Tri, M.E.F. van Mensvoort, R.H. Bosma, M.C.M. Beveridge. Wageningen, The Netherlands. Wageningen Academic Publishers p. 79–86.
  • RAHMAN M.M., VERDEGEM M.C.J., NAGELKERKE L.A.J., WAHAB M.A., MILSTEIN A., VERRETH J.A.J. 2006. Growth, production and food preference of rohu Labeo rohita (H.) in monoculture and in polyculture with common carp Cyprinus carpio (L.) under fed and non-fed ponds. Aquaculture. Vol. 257 p. 359–372. DOI 10.1016/j.aquaculture.2006.03.020.
  • REBOUÇAS V.T., CALDINI N.N., CAVALCANTE D., SILVA F.J.R., SÁ M.V. 2012. Interaction between feeding rate and area for periphyton in culture of Nile tilapia juveniles. Acta Scientiarum. Animal Sciences. Vol. 34(2) p. 161–167. DOI 10.4025/actascianimsci.v34i2.12469.
  • ROTH E., ROSENTHAL H., BURBRIDGE P. 2000. A discussion of the use of the sustainability index: ‘ecological footprint’ for aqauculture production. Aquatic Living Resources. Vol. 13 p. 461–469. DOI 10.1016/S0990-7440(00)01071-8.
  • SAREMI A., SAREMI K., SAREMI A., SADEGHI M., SEDGHI H. 2013. The effect of aquaculture effluents on water quality parameters of Haraz River. Iranian Journal of Fisheries Sciences. Vol. 12(2) p. 445–453.
  • SHOKO A.P., LIMBU M.S., MROSSO H.D.J., MGAYA Y.D. 2014. A comparison of diurnal dynamics of water quality parameters in Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) monoculture and polyculture with African sharp tooth catfish (Clarias gariepinus, Burchell, 1822) in earthen ponds. International Aquatic Research. Vol. 6, 56. DOI 10.1007/s40071-014-0056-8.
  • SHRESTA M.K., BHANDARI M.P., DIANA J.S., JAISWAL R., MISHRA R.N., PANDIT N.P. 2018. Positive impacts of Nile tilapia and predatory sahar on carp polyculture production and profits. Aquaculture and Fisheries. Vol. 3 p. 204–208. DOI 10.1016/j.aaf.2018.06.002.
  • SIGNOR A., SIGNOR A.A., BOSCOLO W.R., REIDEL A., KLEIN S., FEIDEN A. 2015. Periphyton biomass on artificial substrates during the summer and winter. Ciencia Rural. Vol. 45(1) p. 72–78. DOI 10.1590/0103-8478cr20130635.
  • SILVA U.L., FALCON D.R., DA CRUZ PESSOA M.N., DE SOUZA CORREIA E. 2017. Carbon sources and C:N ratios on water quality for Nile tilapia farming in biofloc system. Revista Caatinga. Vol. 30(4) p. 1017–1027. DOI 10.1590/1983-21252017v30n423rc.
  • SIPAUBA-TAVARES L.H., DONADON A.R.V., MILAN R.N. 2011. Water quality and plankton populations in an earthen polyculture pond. Brazilian Journal of Biology. Vol. 71(4) p. 845–855. DOI 10.1590/S1519-69842011000500005.
  • SIPAUBA-TAVERES L.H., MILLAN R.N., MILSTEIN A. 2016. Limnology of an integrated cage-pond aquaculture farm. Acta Limnologica Brasiliensia. Vol. 28. DOI 10.1590/S2179-975X3014.
  • SUANTIKA G., PRATIWI M. I., SITUMORANG M.L., DJOHAN Y.A., MUHAMMAD H., ASTUTI F.I. 2016. Ammonium removal by nitrifying bacteria biofilm on limestone and bioball substrate established in freshwater trickling biofilter. Poultry, Fisheries & Wildlife Sciences. Vol. 4(2). DOI 10.4172/2375-446.1000157.
  • TORTOLERO S.A.R., CAVERO B.A.S., BORITO J., SOARES C.C., SILVA J.L. J R., ALMEIDA J.C., BARLAYA G., PERAR K. 2016. Periphyton-based jaraqui (Semaprochilodus insignis) culture with two types of substrates ad different densities. Turkish Journal of Fisheries and Aquatic Sciences. Vol. 16 p. 347–359. DOI 10.4194/1303-2712-v16_2_15.
  • TORRES-BERISTAIN B., PILARCZYK M., VERDEGEM M.C.J., VERRETH J.A.J. 2005. Effect of C/N ratio and oxic conditions on organic matter decomposition in lab-scale intensive fresh water system. In: B. Torres-Beristain. Organic matter decomposition in simulated aquaculture ponds [online]. PhD Thesis. Fish Culture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University p. 41–61. [Access 10.11.2021]. Available at: https://edepot.wur.nl/121646.
  • VAN DAM A.A., BEVERIDGE M.C.M., AZIM M.E., VERDEGEM M.C.J. 2002. The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries. Vol. 12 p. 1–31. DOI 10.1023/A:1022639805031.
  • VŠETIČKOVÁ L., ADÁMEK Z., ROZKOŠNÝ M., SEDLÁČEK P. 2012. Effects of semi-intensive carp pond farming on discharged water quality. Acta Ichthyologica et Piscatoria. Vol. 42(3) p. 223–231. DOI 10.3750/AIP2011.42.3.06.
  • WAHAB M.A., RAHMAN M.M., MILSTEIN A. 2002. The effect of common carp Cyprinus carpio (L) and mrigal Cirrhinus mrigala (Hamilton) as bottom feeders in major Indian carp polycultures. Aquaculture Research. Vol. 33 p. 547–557. DOI 10.1046/j.1365-2109.2002.00654.x.
  • WEZEL A., ROBIN J., GUERIN M., ARTHAUD F., VALLOD D. 2013. Management effects on water quality, sediments and fish production in extensive fish ponds in the Dombes region, France. Limnologica. Vol. 43 p. 210–218. DOI 10.1016/j.limno.2012.11.003.
  • WOYNAROVICH A., MOTH-POULSEN T., PETÉRI A. 2010. Carp polyculture in Central and Eastern Europe, the caucasus and Central Asia. FAO Fisheries and Aquaculture Technical Paper. No. 554. Rome. FAO. ISBN 978-92-5-106666-9 pp. 73.
  • YADAV R.K., SRESTHA M.K., PANDIT N.P. 2007. Introduction of Sahar (Tor putitora) in cage-cum pond integration system of mixed-sex Nile tilapia (Oreochromis niloticus). Our Nature. Vol. 5(1) p. 52–59. DOI 10.3126/on.v5i1.798.
  • YI Y. 1999. Modeling growth of Nile tilapia (Oerochromis niloticus) in cage-cum-pond integrated culture system. Aquaculture Engineering. Vol. 21 p. 113–133. DOI 10.1016/S0144-8609(99)00027-8.
  • YI Y., LIN C.K. 2001. Effects of biomass of caged Nile tilapia (Oerochromis niloticus) and aeration on the growth and yields in an integrated cage-cum-pond system. Aquaculture. Vol. 195 p. 253–267. DOI 10.1016/S0044-8486(00)00558-5.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3c6584e-4e07-41ce-b5ae-725e646e44d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.