PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SuperDARN w Polsce : perspektywy dla badań atmosfery

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
SuperDARN in Poland : opportunity for atmospheric science research
Języki publikacji
PL
Abstrakty
PL
SuperDARN (Super Dual Auroral Radar Network) jest światową siecią radarów koherentnego rozpraszania w paśmie wysokich częstotliwości HF (High Frequency) do badań górnych warstw atmosfery, mezosfery, jonosfery, termosfery oraz ich sprzężenia z magnetosferą i wiatrem słonecznym. Do głównych tematów badawczych SuperDARN z dziedziny fizyki atmosfery należą echa mezosferyczne, fale planetarne i związane z nimi przemieszczające się zaburzenia jonosferyczne oraz inne przejawy oddziaływania atmosfery neutralnej ze zjonizowaną. W artykule przedstawiamy perspektywy dla rozwoju badań atmosfery z użyciem radarów SuperDARN w kraju, ze szczególnym uwzględnieniem badań z dziedziny elektryczności atmosferycznej.
EN
SuperDARN (Super Dual Auroral Radar Network) is a global network of coherent scatter radars in the HF (High Frequency) band for studying the upper atmosphere, mesosphere, ionosphere, thermosphere and their coupling with the magnetosphere and solar wind. SuperDARN research topics in the field of atmospheric physics include mesospheric echoes, planetary waves and associated travelling ionospheric disturbances, and other manifestations of the interaction of neutral and ionised atmosphere. In the article we present prospects for the development of atmospheric research in Poland using SuperDARN radars, with particular emphasis on research studies in the field of atmospheric electricity.
Rocznik
Tom
Strony
267--286
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
autor
  • Instytut Geofizyki Polskiej Akademii Nauk
Bibliografia
  • [1] Anderson B. J., Korth H., Waters C. L., Green D. L., Merkin V. G., Barnes R. J., Dyrud L. P., 2014, Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, Geophysical Research Letters, 41 (9), 3017-3025, DOI: 10.1002/2014GL059941.
  • [2] Apsen A. G., Kanonidi K. D., Chernysheva S. P., Chetaev D. N., Scheftel V. M., 1988, Magnetosfernye effekty v atmosfernom elektrichestve, Publications of the Academy of Sciences USSR, IZMIRAN, Nauka, Moskwa, 149 s.
  • [3] Baker J. B. H., Greenwald R. A., Ruohoniemi J. M., Oksavik K., Gjerloev J. W., Paxton L. J., Hairston M. R., 2007, Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes, Journal of Geophysical Research – Space Physics, 112 (A1), DOI: 10.1029/2006JA011982.
  • [4] Bandilet O. I., Kanonidi Kh. D., Chernysheva S. P., Sheftel V. M., 1986, Efekty magnitosfernych subbur’ v atmosfernom elektriczeskom pole, Geomagnetizm i Aeronomiya, 26 (1), 159-160.
  • [5] Berngardt O. I., Ruohoniemi J. M., Nishitani N., Shepherd S. G., Bristow W. A., Miller E. S., 2018, Attenuation of decameter wavelength sky noise during X-ray solar flares in 2013-2017 based on the observations of midlatitude radars, Journal of Atmospheric and Solar-Terrestrial Physics, 173, 1-13, DOI: 10.1016/j.jastp.2018.03.022.
  • [6] Bojanowska M., 2005, Niezwykle silne burze pogody kosmicznej: zorze polarne nad Polską, Przegląd Geofizyczny, 50 (3-4), 219-227.
  • [7] Burns G. B., Hesse M. H., Parcell S. K., Malachowski S., Cole K. D., 1995, The geoelectric field at Davis station, Antarctica, Journal of Atmospheric and Terrestrial Physics, 57 (14), 1783-1797, DOI: 10.1016/0021-9169(95)00098-M.
  • [8] Burns G. B., Tinsley B. A., Frank-Kamenetsky A. V., Troshichev O. A., French W. J. R., Klekociuk A. R., 2012, Monthly diurnal global atmospheric circuit estimates derived from Vostok electric field measurements adjusted for local meteorological and solar wind influences, Journal of the Atmospheric Sciences, 69 (6), 2061-2082, DOI: 10.1175/JAS-D-11-0212.1.
  • [9] Chisham G., Lester M., Milan S. E., Freeman M. P., Bristow W. A., Grocott A., McWilliams K. A., Ruohoniemi J. M., Yeoman T. K., Dyson P. L., Greenwald R. A., Kikuchi T., Pinnock M., Rash J. P. S., Sato N., Sofko G. J., Villain J.-P. Walker A. D. M., 2007, A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions, Surveys in Geophysics, 28 (1), 33-109, DOI: 10.1007/s10712-007-9017-8.
  • [10] Corney R. C., Burns G. B., Michael K., Frank-Kamenetsky A. V., Troshichev O. A., Bering E. A., Papitashvili V. O., Breed A. M., Duldig M. L., 2003, The influence of polar-cap convection on the geoelectric field at Vostok, Antarctica, Journal of Atmospheric and Solar-Terrestrial Physics, 65 (3), 345-354, DOI: 10.1016/S1364-6826(02)00225-0.
  • [11] Cousins E. D. P., Matsuo T., Richmond A. D., 2013, SuperDARN assimilative mapping, Journal of Geophysical Research – Space Physics, 118 (12), 7954-7962, DOI: 10.1002/2013JA019321.
  • [12] Cowley S. W. H., Owen C. J., 1989, A simple illustrative model of open flux tube motion over the dayside magnetopause, Planetary and Space Science, 37 (11), 1461-1475, DOI: 10.1016/0032-0633(89)90116-5.
  • [13] Dorman L. I., 1991, Cosmic rays and atmospheric electricity, [w:] Proceedings of the International Workshop on Global Atmospheric Electricity Measurements, S. Michnowski, L. H. Ruhnke (red.), Publications of the Institute of Geophysics Polish Academy of Sciences: Physics of the Atmosphere Series, D-35 (238), 215-221.
  • [14] Dworak T. Z., 1994, Fizyka środowiska atmosferycznego, Wydawnictwo Akademii Górniczo-Hutniczej im. Stanisława Staszica, Kraków, 111 s.
  • [15] Frank-Kamenetsky A. V., Kotikov A. L., Kruglov A. A., Burns G. B., Kleimenova N. G., Kozyreva O. V., Kubicki M., Odzimek A., 2012, Variations in the near-surface atmospheric electric field at high latitudes and ionospheric potential during geomagnetic perturbations, Geomagnetism and Aeronomy, 52 (5), 629-638, DOI: 10.1134/S0016793212050064.
  • [16] Frank-Kamenetsky A., Troshichev O., Burns G., Papitashvili V., 2001, Variations of the atmospheric electric field in the near-pole region related to the interplanetary magnetic field, Journal of Geophysical Research – Space Physics, 106 (A1), 179-190, DOI: 10.1029/2000JA900058.
  • [17] Frissell N. A., Baker J. B. H., Ruohoniemi J. M., Gerrard A. J., Miller E. S., Marini J. P., West M. L., Bristow W. A., 2014, Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar, Journal of Geophysical Research – Space Physics 119 (9), 7679-7697, DOI: 10.1002/2014JA019870.
  • [18] Góral G., 2019, SuperDARN radars – Introduction, [w:] Book of extended abstracts, “Electromagnetic ULF/ELF Fields on Earth and in Space” Conference, Warsaw, Poland, 3-5 July 2019, Publications of the Institute of Geophysics, Polish Academy of Sciences, 425 (M-32), 73-81, DOI: 10.25171/InstGeoph_PAS_Publs-2019-015.
  • [19] Greenwald R. A., Baker K. B., Dudeney J. R., Pinnock M., Jones T. B., Thomas E. C., Villain J.-P., Cerisier J.-C., Senior C., Hanuise C., Hunsucker R. D., Sofko G., Koehler J., Nielsen E., Pellinen R., Walker A. D. M., Sato N., Yamagishi H., 1995, DARN/SuperDARN. A global view of the dynamics of high-latitude convection, Space Science Reviews, 71 (1-4), 761-796, DOI: 10.1007/BF00751350.
  • [20] Grocott A., Hosokawa K., Ishida T., Lester M., Milan S. E., Freeman M. P., Sato N., Yukimatu A. S., 2013, Characteristics of medium-scale traveling ionospheric disturbances observed near the Antarctic Peninsula by HF radar, Journal of Geophysical Research – Space Physics, 118 (9), 5830-5841, DOI: 10.1002/jgra.50515.
  • [21] Hargreaves J. K., 1992, The solar-terrestrial environment, Cambridge University Press, 420 s.
  • [22] Hays P., Roble R., 1979, Coupling of magnetospheric electrical effects into the Global Atmospheric Electrical Circuit., [w:] Quantitative modeling of magnetospheric processes, W. P. Olson (red.), American Geophysical Union, 326-337.
  • [23] Hibbins R. E., Freeman M. P., Milan S. E., Ruohoniemi J. M., 2011, Winds and tides in the midlatitude Southern Hemisphere upper atmosphere recorded with the Falkland Islands SuperDARN radar, Annales Geophysicae, 29 (11) 1985-1996, DOI: 10.5194/ angeo-29-1985-2011.
  • [24] Hocke K., Schlegel K., 1996, A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995, Annales Geophysicae, 14 (9), 917-940, DOI: 10.1007/s00585-996-0917-6.
  • [25] Hosokawa K., Ogawa T., Arnold N. F., Lester M., Sato N., Yukimatu A. S., 2005, Extraction of polar mesosphere summer echoes from SuperDARN data, Geophysical Research Letters, 32 (12), DOI: 10.1029/2005GL022788.
  • [26] Hunsucker R. D., 1982, Atmospheric gravity waves generated in the high latitude ionosphere: a review, Reviews of Geophysics – Space Physics, 20 (2), 293-315, DOI: 10.1029/RG020i002p00293.
  • [27] Ishida T., Hosokawa K., Shibata T., Suzuki S., Nishitani N., Ogawa T., 2008, SuperDARN observations of daytime MSTIDs in the auroral and mid-latitudes: Possibility of long-distance propagation, Geophysical Research Letters, 35 (13), DOI: 10.1029/2008GL034623.
  • [28] Joshi P. P., Baker J. B. H., Ruohoniemi J. M., Makela J. J., Fisher D. J., Harding B. J., Frissell N. A., Thomas E. G., 2015, Observations of storm time midlatitude ion-neutral coupling using SuperDARN radars and NATION Fabry-Perot interferometers, Journal of Geophysical Research – Space Physics, 120 (10), 8989-9003, DOI: 10.1002/2015JA021475.
  • [29] Kelley M. C., 1989, The Earth’s ionosphere, Academic Press, 576 s.
  • [30] Kirkwood S., 2007, Polar mesosphere winter echoes – A review of recent results, Advances in Space Research, 40 (6), 751-757, DOI: 10.1016/j.asr.2007.01.024.
  • [31] Kleimenova N. G., Kozyreva O. V., Kubicki M., Michnowski S., 2010, Morning polar substorms and variations in the atmospheric electric field, Geomagnetism and Aeronomy, 50 (1), 48-57, DOI: 10.1134/S0016793210010068.
  • [32] Kleimenova N. G., Kozyreva O. V., Kubicki M., Michnowski S., 2011, Variations in the near-ground electric field at high latitudes and the potential drop across the polar cap during morning polar substorms, Geomagnetism and Aeronomy, 51 (3), 394-401, DOI: 10.1134/S0016793211030091.
  • [33] Kleimenova N. G., Kozyreva O. V., Kubicki M., Odzimek A., Malysheva L. M., 2012, Effect of substorms in the Earth’s nightside sector on variations in the surface atmospheric electric field at polar and equatorial latitudes, Geomagnetism and Aeronomy, 52 (4), 467-473, DOI: 10.1134/S001679321204007X.
  • [34] Kleimenova N. G., Kozyreva O. V., Michnowski S., Kubicki M., 2008, Effect of magnetic storms in variations in the atmospheric electric field at midlatitudes, Geomagnetism and Aeronomy, 48 (5), 622-630, DOI: 10.1134/S0016793208050071.
  • [35] Kleimenova N. G., Kubicki M., Odzimek A., Malysheva L. M., Gromova L. I., 2017, Effects of geomagnetic disturbances in daytime variations of the atmospheric electric field in polar regions, Geomagnetism and Aeronomy, 57 (3), 266-273, DOI: 10.1134/S0016793217030070.
  • [36] Kłos Z., Stanisławska I., Michnowski S., 2009, Globalny elektryczny obwód atmosfery i pogoda kosmiczna, [w:] Polskie Towarzystwo Geofizyczne 1947-2007, E. Bogdanowicz, U. Kossowska-Cezak, J. Szkutnicki (red.), IMGW, Warszawa, 50-58.
  • [37] Kubicki M., Odzimek A., Kleimenova N. G., Kozyreva O. V., Neska M., 2014, Synchronization of main global electric circuit generators from ground-level electric field Ez at three distant locations on the globe at middle and high latitudes, [w:] Proceedings of the 15th International Conference on Atmospheric Electricity, ICAE 2014 Organizing Committee.
  • [38] Kubicki M., Odzimek A., Neska M., Berlinski J., Michnowski S., 2016, First observations of the atmospheric electric field at Arctowski Antarctic station by the new Polish atmospheric electricity observation network, Acta Geophysica, 64 (6), 2630-2649, DOI: 10.1515/acgeo-2016-0096.
  • [39] Lester M., 2008, SuperDARN: An example of a network approach to geospace science in the twenty-first century, Journal of Atmospheric and Solar-Terrestrial Physics, 70 (18), 2309-2323, DOI: 10.1016/j.jastp.2008.08.003.
  • [40] Lester M., 2013, The Super Dual Auroral Radar Network (SuperDARN): An overview of its development and science, Advances in Polar Science, 24 (1), 1-11, DOI: 10.3724/SP.J.1085.2013.00001.
  • [41] Lewandowski M., 2019, A new concept for the Polish Antarctic Station Dobrowolski: autonomic research module for geophysical research, Open Meeting with Russian researchers from All-Russia Research Institute for Geology and Mineral Resources of the World Ocean, 1 października 2019, Instytut Geofizyki PAN.
  • [42] Lucas G. M., Baumgaertner A. J. G., Thayer J. P., 2015, A global electric circuit model within a community climate model, Journal of Geophysical Research – Atmospheres, 120 (23), 12054-12066, DOI: 10.1002/2015JD023562.
  • [43] Lukianova R. Y., Kruglov A. A., Frank-Kamenetskii A. V., Kotikov A. L., Burns G. B., French V. D. R., 2011, Relationship between the ionospheric potential and the ground level electric field in the southern polar cap, Geomagnetism and Aeronomy, 51 (3), 383-393, DOI: 10.1134/S0016793211030121.
  • [44] Michnowski S., 1996, O zastosowaniach obserwacji atmosferycznych i geomagnetycznych w Hornsundzie w badaniach oddziaływania wiatru słonecznego na atmosferę ziemską, Przegląd Geofizyczny, 41 (1-2), 49-55.
  • [45] Michnowski S., 1998, Solar wind influences on atmospheric electricity variables in polar regions, Journal of Geophysical Research – Atmospheres, 103 (D12), 13939-13948, DOI: 10.1029/98JD01312.
  • [46] Michnowski S., Odzimek A., Kleimenova N., Kozyreva O., Kubicki M., Nikiforova N. N., 2014, Review of examples of solar wind-lower atmosphere coupling observed in the electric field (Ez) variations at the Earth’s surface during magnetic storms, [w:] Proceedings of the 15th International Conference on Atmospheric Electricity, ICAE 2014 Organizing Committee.
  • [47] Michnowski S., Szymański A., Nikiforova N. N., Kozyreva O. V., Ermolenko D., Zielkowski K., 1991, On simultaneous observations of geomagnetic and atmospheric electric field changes in Arctic station Hornsund, Spitsbergen, [w:] Proceedings of the International Workshop on Global Atmospheric Electricity Measurements, S. Michnowski, L. H. Ruhnke (red.), Publications of the Institute of Geophysics, Polish Academy of Sciences: Physics of the Atmosphere Series, D-35 (238), 83-96.
  • [48] Milan S.E., 2015, Sun et Lumière: solar wind-magnetosphere coupling as deduced from ionospheric flows and polar auroras, [w:] Magnetospheric plasma physics: the impact of Jim Dungey’s research, D. Southwood, S. W. H. Cowley FRS, S. Mitton (red.), Springer, Berlin, 33-64.
  • [49] Milan S. E., Clausen L. B. N., Coxon J. C., Carter J. A., Walach M.-T., Laundal K., Ostgaard N., Tenfjord P., Reistad J., Snekvik K., Korth H., Anderson B. J., 2017, Overview of solar wind-magnetosphere-ionosphere-atmosphere coupling and the generation of magnetospheric currents, Space Science Review, 206 (1-4), 547-573, DOI: 10.1007/s11214-017-0333-0.
  • [50] Morozov V. N., Troshichev O. A., 2008, Simulation of variations in the polar atmospheric electric field related to the magnetospheric Field-Aligned Currents, Geomagnetism and Aeronomy, 48 (6), 759-769 [Geomagn. Aeron. (Engl. Transl.), 48, 727-736.
  • [51] Nikiforova N. N., Kleimenova N. G., Kozyreva O. V., Kubicki M., Michnowski S., 2005, Unusual variations in the atmospheric electric field during the main phase of the strong magnetic storm of October 30, 2003, at Świder Polish mid-latitude observatory, Geomagnetism and Aeronomy, 45 (1), 140-144.
  • [52] Nishitani N., Ogawa T., Otsuka Y., Hosokawa K., Hori T., 2011, Propagation of large amplitude ionospheric disturbances with velocity dispersion observed by the SuperDARN Hokkaido radar after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets and Space, 63 (7), 891-896, DOI: 10.5047/eps.2011.07.003.
  • [53] Nishitani N., Ruohoniemi J. M., Lester M., Baker J. B. H., Koustov A. V., Shepherd S. G., Chisham G., Hori T., Thomas E. G. Makarevich R. A., Marchaudon A., Ponomarenko P., Wild J. A., Milan S. E., Bristow W. A., Devlin J., Miller E., Greenwald R. A., Ogawa T., Kikuchi T., 2019, Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars, Progress in Earth and Planetary Science, 6 (1), 27 s., DOI: 10.1186/s40645-019-0270-5.
  • [54] Odzimek A., 2019, Obszary polarne w badaniach globalnego atmosferycznego obwodu elektrycznego Ziemi, Przegląd Geofizyczny, 64 (1-2), 35-72, DOI: 10.32045/PG-2019-002.
  • [55] Odzimek A., Kubicki M., Lester M., Grocott A., 2011, Relation between the SuperDARN ionospheric potential and ground electric field at polar station Hornsund, [w:] Proceedings of the 13th International Committee on Atmospheric Electricity Conference, 7-12 października 2011, Rio de Janeiro, Brazil, 4 s.
  • [56] Odzimek A., Lester M., 2009, Modelling the Earth’s global atmospheric electric circuit - development, challenges and directions, [w:] Recent developments in atmospheric electricity (Publication to commemorate the 90th birthday of Stanisław Michnowski), P. Barański, M. Kubicki (red.), Publications of the Institute of Geophysics Polish Academy of Sciences: Physics of the Atmosphere Series, D-73 (214), 37-54.
  • [57] Odzimek A., Lester M., Kubicki M., 2010, EGATEC: a new high-resolution engineering model of the global atmospheric electric circuit – Currents in the lower atmosphere, Journal of Geophysical Research – Atmospheres, 115 (D18), DOI: 10.1029/2009JD013341.
  • [58] Olson D. E., 1971, The evidence for auroral effects on atmospheric electricity, Pure and Applied Geophysics, 84 (1), 118-138, DOI: 10.1007/BF00875461.
  • [59] Park C. G., 1976, Downward mapping of high-latitude ionospheric electric fields to the ground, Journal of Geophysical Research, 81 (1), 168-174, DOI: 10.1029/JA081i001p00168.
  • [60] Ponomarenko P., Iserhienrhien B., St-Maurice JP., 2016, Morphology and possible origins of near-range oblique HF backscatter at high and midlatitudes, Radio Science, 51 (6), 718-730, DOI: 10.1002/2016RS006088.
  • [61] Popielawska B., 1996, Propozycja wykorzystania stacji Hornsund w międzynarodowym programie badawczym GEM (Geospace Environment Modelling), Przegląd Geofizyczny, 41 (1-2), 17-24.
  • [62] Popielawska B., 2002, Pogoda kosmiczna – bardzo przyziemna sprawa, Publications of the Institute of Geophysics. Polish Academy of Sciences: Miscellanea Series, M-25 (347), 305-319.
  • [63] Popielawska B., Odzimek A., Stanisławska I., Kubicki M., Wernik M., Góral G., Grzesiak M., Pożoga M., 2011, SuperDARN in Poland – study of potential scientific benefits, SuperDARN Workshop 2011, 30 maja-3 czerwca 2011, Dartmouth College, Hanover, New Hampshire, USA, dostępne online: http://superdarn.thayer.dartmouth.edu/workshop/proceedings.html (08.11.2019).
  • [64] Raina L. I., Modulation of global circuit by extra-terrestrial influences, [w:] Proceedings of the International Workshop on Global Atmospheric Electricity Measurements, S. Michnowski, L. H. Ruhnke (red.), Publications of the Institute of Geophysics Polish Academy of Sciences: Physics of the Atmosphere Series, D-35 (238), 33-46.
  • [65] Rapp M., Lübken F.-J., 2004, Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmospheric Chemistry and Physics, 4 (11-12), 2601-2633, DOI: 10.5194/acp-4-2601-2004.
  • [66] Rietveld M. T., Senior A., Markkanen J., Westman A., 2016, New capabilities of the upgraded EISCAT high-power HF facility, Radio Science, 51 (9), 1533-1546, DOI: 10.1002/2016RS006093.
  • [67] Roble R. G., 1985, On solar-terrestrial relationships in atmospheric electricity, Journal of Geophysical Research – Atmospheres, 90 (D4), 6000-6012, DOI: 10.1029/JD090iD04p06000.
  • [68] Roble R. G., Hays P. B., 1979, A quasi-static model of global atmospheric electricity 2. Electrical coupling between the upper and lower atmosphere, Journal of Geophysical Research, 84 (A12), 7247-7256, DOI: 10.1029/JA084iA12p07247.
  • [69] Ruohoniemi J., Baker K., 1998, Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations, Journal of Geophysical Research – Space Physics, 103 (A9), 20797-20811, DOI: 10.1029/98JA01288.
  • [70] Ruohoniemi J. M., Barnes R. J., Greenwald R. A., Shepherd S. G., 2001, The response of the high-latitude ionosphere to the coronal mass ejection event of April 6, 2000: a practical demonstration of space weather nowcasting with the Super Dual Auroral Radar Network HF radars, Journal of Geophysical Research – Space Physics, 106 (A12), 30085-30097, DOI: 10.1029/2000JA000217.
  • [71] Samson J. C., Greenwald R. A., Ruohoniemi J. M., Baker K. B., 1989, High-frequency radar observations of atmospheric gravity waves in the high-latitude ionosphere, Geophysical Reserach Letters, 16 (8), 875-878, DOI: 10.1029/GL016i008p00875.
  • [72] Sheftel V. M., 1991, Effects of magnetosphere-ionosphere generators and solar flares on the atmospheric electricity of high latitudes, [w:] Proceedings of the International Workshop on Global Atmospheric Electricity Measurements, S. Michnowski, L. H. Ruhnke (red.), Publications of the Institute of Geophysics, Polish Academy of Sciences: Physics of the Atmosphere Series, D-35 (238), 23-31.
  • [73] Swider W., 1988, Ionic mobility, mean mass, and conductivity in the middle atmosphere from near ground level to 70 km, Radio Science, 23 (3), 389-399, DOI: 10.1029/RS023i003p00389.
  • [74] Thomas E. G., Shepherd S. G., 2018, Statistical patterns of ionospheric convection derived from mid-latitude, high-latitude, and polar SuperDARN HF radar observations, Journal of Geophysical Research – Space Physics, 123 (4), 3196-3216, DOI: 10.1002/2018JA025280.
  • [75] Tinsley B. A., 2000, Influence of the solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Science Reviews, 94 (1-2), 231-258, DOI: 10.1023/A:1026775408875.
  • [76] Tinsley B. A., Liu W., Rohrbaugh R. P., Kirkland M. W., 1998, South Pole electric field responses to overhead ionospheric convection, Journal of Geophysical Research – Atmospheres, 103 (D20), 26137-26146, DOI: 10.1029/98JD02646.
  • [77] Victor N. J., Panneerselvam C., Anil Kumar C. P., 2015, Variation of surface electric field during geomagnetic disturbed period at Maitri, Antarctica, Journal of Earth System Science, 124 (8), 1721-1733, DOI: 10.1007/s12040-015-0638-x.
  • [78] Walach M.-T., Grocott A., 2019, SuperDARN observations during geomagnetic storms, geomagnetically active times, and enhanced solar wind driving, Journal of Geophysical Research – Space Physics, 124 (7), 5828-5847, DOI: 10.1029/2019JA026816.
  • [79] Wernik A. W., 1996, Jonosfera na dużych szerokościach i jej badania w polskiej stacji polarnej na Spitsbergenie, Przegląd Geofizyczny, 41 (1-2), 31-37.
  • [80] Wodnicka E. B., 1996, Magnetosfera Ziemi i jej wyróżnione obszary, Przegląd Geofizyczny, 41 (1-2), 25-29.
  • [81] Yakymenko K. N., Koustov A. V., Nishitani N., 2015, Statistical study of midlatitude E-region echoes observed by the Hokkaido SuperDARN HF radar, Journal of Geophysical Research – Space Physics, 120 (11), 9959-9976, DOI: 10.1002/2015JA021685.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3be6bc7-3756-4244-a3fd-0768c7cd7bb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.