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STATIC STABILITY ANALYSIS OF POWER SYSTEMS 
 
 

The developed modal method for analyzing oscillating static stability of power 
systems is based on eigenvalues and eigenvectors. As a mathematical model to the study 
we use a system of linearized differential equations that describe the behaviour of 
synchronous machines and their excitation systems during minor disturbances. This 
approach allows us to analyse the static stability of large power systems, evaluate 
stability margins, degree of damping modes, and set adjustment mechanism for mode 
parameters to improve mode stability. We investigated the impact of generator excitation 
system replacement on stability of Ukraine’s power system. The suggested modal 
analysis is implemented in the DAKAR software suite [1]. 
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1. INTRODUCTION 
 
The current stage of power system development is marked by increasing 

number of systems with weak interconnections and replacement of outdated 
automatic control systems with new modern ones. This causes transient 
processes in the dynamic objects to display new characteristics that form 
complex local and systemic system, untypical of simple-structure systems. Low 
frequency oscillations are usually associated with low attenuation and 
underdamping of system parameters and may create instability of accumulations 
of power system clusters. To avoid this, power system operations should follow 
certain restrictive guidelines. Electromechanical transients that occur under 
minor and serious disturbances are related not only to change of mode electric 
parameters, but also to processes in generator’s mechanical section/hardware. 
The main equation covering both electrical and mechanical parameters is the 
equation of generator rotor float. 
 The modal method is the most modern method currently used to analyse 
power system stability. This method involves decomposition of power system 
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free oscillations to separate components. Considering complex systems, the 
process of merging power systems is the most difficult to simulate. First, the 
main problem is the size of such system as it consists of hundreds of generators 
connected with thousands of power lines, bushes, and hundreds of load centres. 
Secondly, complex nature of network physical processes causes problems due to 
physical values with different time dynamics (electrical changes usually occur 
faster than mechanical change of generator rotor position). Therefore, creating 
an acceptable model for analysis of power system stability requires several 
simplifications. 
 

2. STATIC STABILITY ANALYSIS METHOD 
 

2.1. Mathematical model 
 
The power system under study consists of N synchronous machines 

interconnected by huge quantity of connections. As for the mathematical model 
for study of oscillating static stability for power system, we use a system of 
linearized differential equations that describe behaviour of system oscillations 
caused by minor disturbances. For this approach, the unknown values are the 
oscillation modes parameters that can be used to control power system stability. 
To calculate electromechanical transients, we use a model of synchronous 
machine that is described by the following differential equations [2-4]: 
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where:  – displacement angle of generator rotor against synchronous axis;  
s – generator slip; "

qE  – cross-axis component of generator EMF for q axis; 
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"
dE – direct-axis component of generator EMF for d axis; qeE  – excitation 

voltage; rU  – output voltage of excitation regulator; jT – inertia time constant 

of rotating elements; ..nomgP – generator (turbine) nominal power;   – full 
relative power reached by generator; sp  – steam pressure before turbine; di , qi – 

projection of currents on direct and cross axes; '
0dT , '

0qT  – transient time 
constants for direct and cross axes; qeE , deE  – EMF of excitation for both axes; 

qx , dx  – synchronous reactances for direct and cross axes; "x  – subtransient 

instantaneous reactance; qeT  – exciter time constant; 0
qeE – EMF of generator 

excitation obtained during previous calculation of power flows; rT  – time 
constant of excitation regulator;  Uk0 , Uk1 , Irk1 , fk0 , fk1  – gain coefficient for 
separate channels of control (deviation of voltage derivative, rotor current 
derivative, and frequency deviation and derivative). 

Hence, in our model, each generator is characterized by the following 
unknown values:  , s , "

qE , "
dE , qeE , rU , and the rest of values are considered 

as input data. The last equation of the system (1) can be modified according to 
the excitation system type [5-8]. 
 
2.2. Eigenvalues and eigenvectors 

 
We analyse power system stability using Lyapunov's method [9] that is based 

on the eigenvalues and corresponding eigenvectors of the characteristic matrix 
A. Matrix A is built for the entire power system that consists of N generators 
each of which is described by the system of differential equations (1). The 
eigenvalues are obtained from the condition  

det|A-λ·I| = 0         (2) 
where λ – matrix A eigenvalues, I – unity matrix. Matrix eigenvalues in general 
are complex numbers. The solution for such system of linear algebraic equations 
is 6N-values  

λi = σi + jωi, 
where i = 1,…, 6N, σi – real part of eigenvalue, ωi – imaginary part of 
eigenvalue. To analyse power system stability, it will suffice to take into account 
eigenvalues located in the upper complex semiplane, because power system 
conditions in the lower complex semiplane can be obtained by mirroring upper 
semiplane conditions. The eigenvectors are determined from the eigenvalues and 
functions equation for particular eigenvalue: 

A·ψi = λi·ψi,          (3) 
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where ψi – eigenvector. We are interested only in nontrivial solutions for the 
equation. For this approach, the eigenvector components are complex numbers 
which module determines range of parameters influence degree  , s , "

qE , "
dE , 

qeE , rU  for each generator in creation of a condition. The solution of equation 
(2) is searched for using numerical methods: first, we write matrix A in the form 
of upper or lower Hessenberg matrix, and then, we use the QR-algorithm. 
 
2.3. Method for analysing static stability 

 
In such mathematical model, the imaginary part of eigenvalue determines 

oscillation frequency of power system modes, and the real part is related to the 
stability coefficient and system mode damping. Power system stability is 
determined with the sign of eigenvalue real part of characteristic matrix A for 
the system of linearized differential equations: if the real part of all eigenvalues 
is negative Re λi < 0, then the power system is statically stable; and if at least 
one eigenvalue is Re λi ≥ 0, then the system is statically unstable. Power system 
stability coefficient (margin) is determined as maximum negative value of the 
real part of matrix A eigenvalues: 

ζ = min(|σi|), i = 1, …, 6N       (4) 
 It should be mentioned that power system stability coefficient is searched for 
the entire power system, that is for the whole collection of all nodes. For further 
studies, we consider the mode stability margin to be the module of eigenvalue’s 
real part. When the power system is stable, the damping coefficient should be 
investigated because it can be used to determine dangerous oscillating modes of 
systemic parameters. The damping coefficient is related to the real and 
imaginary parts of eigenvalue as follows: 

22 




 .          (5) 

Since eigenvalues are characteristic of differential equations system that 
describes power system oscillation modes in linear approximation, this 
mechanism can be considered as reasonable to show system response during 
different minor disturbances, in particular, to analyse oscillating static stability. 
To illustrate such power system stability display and analysis, it is convenient to 
divide power system into separate zones of low-frequency systemic oscillations: 
5%, 10%, 15%, and the like. If the eigenvalue is in the 5% damping zone, this 
means a rather slow oscillation damping of mode systemic parameters which 
may be dangerous for power system’s stability. 
 Eigenvectors are another important characteristic of the system of differential 
equations. They are used to determine the degree of generator parameters impact 
on the formation of power system mode (condition). In particular, when studying 
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eigenvectors it is possible to identify generator groups inclined to different 
oscillations and set adjustment mechanism for mode parameters to improve mode 
stability. It is necessary to yield oscillation frequencies when analysing oscillating static 
stability. In general, two oscillation zones are defined based on frequency: 
intersystem oscillations with frequency of 0.1–0.7 Hz, intergenerator and 
interstation oscillations with frequency of 0.7–2 Hz.  
 

3. STATIC STABILITY ANALYSIS  
OF UKRAINIAN POWER SYSTEM 

 
To illustrate model analysis, we investigate how the stability of Ukraine’s 

power system is impacted by replacement of TG-4 excitation system change for 
Rivne NPP block No. 2. Figure 1 presents the block scheme of the new SEMI 
Exciter AEG excitation system, where KI – gain coefficient for current channel; 
TI – time constant for current channel, KU – gain coefficient for voltage channel, 
TU – time constant for voltage channel, KQ – gain coefficient for Q, KT – gain 
coefficient for terminal current limitation channel, TT – time constant for 
terminal current limitation channel, EFD – excitation output voltage, EFD,min – 
excitation minimum voltage, EFD,max – excitation maximum voltage, IFD – 
excitation current, IFD, min – excitation maximum current, PSS – system stabilizer, 
VREF – set voltage of voltage control, VC – output voltage of transducer terminal, 
Q – reactive power, IT – synchronous generator terminal current, IT Limit – 
terminal current limitation. 

 
 

Fig. 1. Mathematical model of SEMI Exciter static excitation system for ТG-4 (block 2) 
synchronous generator 

 
Figure 2 shows part of Ukraine’s power system conditions based on modal 

method where arrows indicate condition movement under different excitation 
systems installed at ТG-4 of Rivne NPP block No. 2: old conditions are marked 
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with green dots and the new excitation system is marked with red dots. Each dot 
in the figure corresponds to a certain possible condition of power system under 
certain frequency. To various extents, the position of each point is influenced by 
all power system generators with different impact degree. Power system has the 
oscillating static stability when all system points are located at the left of cross 
axis. Power system is considered as damped enough if all its conditions lay 
outside of the 5% damping zone. If a power system condition is within the 5% 
zone, this may cause mode oscillation and destroy oscillating static stability. By 
controlling generators parameters, you can change power system conditions, 
which means changing power system stability as required. Power system 
stability coefficient equals ζ = 0.203551 and corresponds to the condition with 
real part of -0.203551 and oscillation frequency of 2.16 Hz. This condition is 
also characterized by the lowest damping coefficient of power system mode. 
 For example, let’s analyse the condition with real part of -0.229119 and 
frequency 0.45 Hz. The table 1 presents results of eigenvalues and eigenvectors 
calculation for old excitation system for AEC at the generator TG-4 of block No. 
2 Rivne NPP (9904). The next table 2 shows presents results of eigenvalues and 
eigenvectors calculation for new excitation system for AEC at the generator ТG-
4 of block No. 2 Rivne NPP (9904) (SEMI Exciter AEG) with KU=10, KI=4 as 
parameters of excitation system. The tables 1 and 2 have the following shortings 
gen. name – generator name, 1i

jw  – impact degree of generator rotor і 

displacement angle on the eigenvalue j formation; 2i
jw  – impact degree of 

generator i slip on the eigenvalue j formation; 3i
jw  – impact degree of generator i 

EMF direct-axis component on the eigenvalue j formation; 4i
jw  – impact degree 

of generator i EMF cross-axis component on the eigenvalue j formation 5i
jw  – 

impact degree of generator i excitation voltage on the eigenvalue j formation; 
6i
jw  – impact degree of generator i excitation regulator output voltage on the 

eigenvalue j formation; i
jw  – impact degree of generator i on the eigenvalue j 

formation. Results show the decrement of generators impact degree including 
the generator studied. The largest impact on the formation of this condition with 
the degree of 0.089536 (9%) has the Zaporizhzhya NPP generator of block No. 2 
(9311), and the impact degree of generator TG-4 of Rivne NPP block No. 2 
(9904) is 0.038939 (4%). The impact degrees of other generators are almost 
identical. Therefore, we should expect explicit movement of this condition after 
excitation system change. After the new excitation system is installed (see table 
1), the impact degree of generator of Zaporizhzhya NPP block No. 2 (9311) on 
the formation of the studied condition is 0.089553 (increased by 0.02% of initial 
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value), and TG-4 of Rivne NPP block No. 2 (9904) – 0.033004 (decreased by 
15% of initial value). The installation of new excitation system decreased impact 
of generator TG-4 of Rivne NPP block No. 2 (9904) on the formation of this 
condition by increasing impact of other generators. With the new excitation 
system, condition stability margin increased by 5%. New excitation system 
improves intersystem oscillations under the frequency of 0.45 Hz. 
 As shown above, we obtained a mechanism to control system parameters: by 
changing excitation system parameters, we can determine their optimal values 
that ensure the largest stability margin for certain condition and entire power 
system. Here is an example. Let’s use another set of parameters for the new 
excitation system, such as KU=2, KI=4. The table 2 shows that third and fourth 
generator parameters have the largest impact. In other words, these are 
generators EMF direct- and cross-axis components. In reality, we can directly 
influence the output voltage of excitation regulator by changing the KU  and KI 
parameters. As for the rest of excitation system parameters  , s , "

qE , "
dE , qeE  

we can change them only indirectly by changing excitation regulator parameters. 
For the new excitation system parameters set KU = 2 and KI = 4, the impact 
degree of studied generator on mode formation is 0.019515 (2%) while the 
stability margin decreased by 7% of the value when KU = 10 and KI = 4. Hence, 
we can deduce that KU = 10 and KI = 4 parameters set is better than KU = 2 and 
KI = 4 set.  
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Fig. 2. Movement of Ukrainian united power system under different excitation system types  
for the ТG-4 of Rivne NPP block No. 2 
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Table 1. Generators impact degree on the studied condition for the old excitation system 

and AEC at ТG-4 generator of Rivne NPP block No. 2 
 

gen. name 
9311_G:б.1 

Zaporizhzhya 
NPP 

9312_G:b.2 
Zaporizhzhya 

NPP 

9821_G:b.1 
Ladyzhyn 

NPP 

9903_G:  
ТG 3 Rivne 

NPP 

9904_G: 
ТG4 Rivne 

NPP 
wj

i1 0.000257 0.000257 0.000196 0.001436 0.001436 
wj

i2 0.002078 0.002078 0.001589 0.011619 0.011619 
wj

i3 0.067933 0.067933 0.040304 0.013241 0.013241 
wj

i4 0.007476 0.007476 0.019832 0.002400 0.002400 
wj

i5 0.005526 0.005526 0.005794 0.003618 0.003618 
wj

i6 0.006266 0.006266 0.006569 0.006625 0.006625 
wj

i 0.089536 0.089536 0.074283 0.038939 0.038939 
 
 
Table 2. Generators impact degree on the studied condition for the new excitation system 

and AEC at ТG-4 generator of Rivne NPP block No2 
 

 
 

4. CONCLUSION 
 
 The suggested modal method based on eigenvalues and eigenvectors allows 
analysing static stability of huge power systems, evaluating stability margin and 
mode damping degree, and setting adjustment mechanisms for mode parameters 
to improve mode stability. We determined that installation of new SEMI Exciter 
AEG excitation system with KU = 10 and KI = 4 parameters set at ТG-4 generator 
of Rivne NPP improves intersystem oscillations at 0.45 Hz. 
 
 

gen. name 
9311_G:b.1 
Zaporizhzh

ya NPP 

9312_G:b.2 
Zaporizhzh

ya NPP 

9821_G: b.1 
Ladyzhyn 

NPP 

9822_G: b.2 
Ladyzhyn 

NPP 

9903_G: 
 ТG 3  Rivne 

NPP 

9904_G: 
ТG 4 Rivne 

NPP 
wj

i1 0.000262 0.000262 0.000209 0.000365 0.001517 0.000853 
wj

i2 0.002070 0.002070 0.001658 0.002893 0.012010 0.006756 
wj

i3 0.068084 0.068084 0.042098 0.020048 0.013518 0.009641 
wj

i4 0.007634 0.007634 0.021021 0.009903 0.002367 0.008341 
wj

i5 0.005411 0.005411 0.005919 0.003052 0.003568 0.002645 
wj

i6 0.006092 0.006092 0.006664 0.003436 0.006429 0.004767 
wj

i 0.089553 0.089553 0.077569 0.039698 0.039409 0.033004 
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