PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positive-definite matrix processes of finite variation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Processes of finite variation, which take values in the positive semidefinite matrices and are representable as the sum of an integral with respect to time and one with respect to an extended Poisson random measure, are considered. For such processes we derive conditions for the square root (and the r-th power with 0 < r < 1) to be of finite variation and obtain integral representations of the square root. Our discussion is based on a variant of the It8 formula for finite variation processes. Moreover, Ornstein-Uhlenbeck type processes taking values in the positive semidefinite matrices are introduced and their probabilistic properties are studied.
Rocznik
Strony
3--43
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Department of Mathematical Sciences, University of Århus, Ny Munkegade, DK-8000 Arhus C, Denmark
autor
  • Graduate Programme, Applied Algorithmic Mathematics, Centre for Mathematical Sciences, Munich University of Technology, Boltzmannstraße 3, D-85747 Garching, Germany
Bibliografia
  • [1] T. Ando, Comparison of norms |||f (a)-f(b)||| and |||f(|a-b|)|||. Math. Z. 197 (1988) pp. 40-09.
  • [2] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Stud. Adv. Math., Vol. 93, Cambridge University Press, Cambridge 2004.
  • [3] M. Arató, Linear Stochastic Systems with Constant Coefficients, Lecture Notes in Control and Inform. Sci., Vol. 45, Springer, Berlin 1982.
  • [4] X. Bardina and M. Jolis, An extension of It65 formula for elliptic diffusion processes, Stochastic Process. Appl. 69 (1997), pp. 83-109.
  • [5] O. E. Barndorff-Nielsen, Probability and statistics; selfdecomposability, finance and turbulence, in: Proceedings of the conference "Probability towards 2000" held at Columbia University, New York, 2-6 October 1995, L. Accardi and C. C. Heyde (Eds.), Springer, Berlin 1998a, pp. 47-57.
  • [6] O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance Stoch. 2 (1998b), pp. 41-68.
  • [7] O. E. Barndorff-Nielsen, S. E. Gaversen, J. Jacod, M. Podolskij and N. Shephard, A central limit theorem for realised power and bipower variations of continuous semimartingales, in: From Stochastic Calculus to Mathematical Finance-The Shiryaev Festschrift, Y. Kabanov, R. Lipster and J. Stoyanov (Eds.), Springer, Heidelberg 2006, pp. 33-68.
  • [8] O. E. Barndorff-Nielsen, S. E. Graversen, J. Jacod and N. Shephard, Limit theorems for bipower variation in financial econometrics, Econometric Theory 22 (2006), pp. 677-719.
  • [9] 0. E. Barndorff-Nielsen, J. Pedersen and K. Sato, Multivariate subordination, self-decomposability and stability, Adv. in Appl. Probab. 33 (2001), pp. 160-187.
  • [10] 0. E. Barndorff-Nielsen and V. Pérez-Abreu, Extensions of type G and marginal infinite divisibility, Theory Probab. Appl. 47 (2002), pp. 202-218.
  • [11] 0. E. Barndorff-Nielsen and V. Pérez-Abreu, Matrix subordinators and related Upsilon transformations, Theory Probab. Appl. (2007), to appear.
  • [12] 0. E. Barndorff-Nielsen and J. Schmiegel, Lévy-based tempo-spatial modelling; with applications to turbulence, Uspekhi Mat. Nauk 59 (2004), pp. 65-91.
  • [I3] 0. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial econometrics (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), pp. 167-241.
  • [14] 0. E. Barndorff-Nielsen and N. Shephard, Integrated OU processes and non-Gaussian OU-based stochastic volatility models, Scand. J. Statist. 30 (2003), pp. 277-295.
  • [I5] 0. E. Barndorff-Nielsen and N. Shephard, Financial Volatility in Continuous Time, Cambridge University Press, Cambridge 2007, to appear.
  • [16] R. Bhatia, Matrix Analysis, Grad. Texts in Math., Vol. 169, Springer, New York 1997.
  • [17] K. Bichteler, Stochastic Integration with Jumps, Encyclopedia Math. Appl., Vol. 89, Cambridge University Press, Cambridge 2002.
  • [18] M. S. Birman, L. S. Koplienko and M. Z. Solomjak, Estimates of the spectrum of a difference of fractional powers of selfadjoint operators, Izv. Vysh. Uchebn. Zaved. Mat. 154 (1975), pp. 3-10. English translation: Soviet Math. (Iz. VUZ) 19 (1975), No 3, 1-6 (1976).
  • [19] M.-F. Bru, Wishart processes, J. Theoret. Probab. 4 (1991), pp. 725-751.
  • [20] A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics 21 (1987), pp. 251-286.
  • 1211 R. Cont and P. Tankov, Financial Modelling with Jump Processes, CRC Financial Mathematical Series, Chapman and Hall, London 2004.
  • [22] J. Duda, Cone monotone mappings: Continuity and differentiability, Nonlinear Anal. (2007), to appear.
  • [23] R. Ghomrasni and 6, Peskir, Local time-space calculus and extensions of Itô’s formula, in: High Dimensional Probability IZI, J. Hoffmann-Jørgensen, M. 3. Marcus and J. A. Weher (Eds.), Progr. Probab., Vol. 55, Birkhauser, Base1 2003, pp. 177-192.
  • [24] C. Gourieroux, J. Jasiak and R. Sufana, The Wishart autoregressive process of multi variate stochastic volatility, Document de travail du CREST 2004-32, CREST, Malakoff, France, 2004.
  • [25] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge 1990.
  • [26] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge 1991.
  • [27] F. Hubalek and E. Nicola to, On multivariate extensions of Lévy driven Ornstein-Uhlenbeck type stochastic volatility models and multi-asset options, 2005, in preparation.
  • [28] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., Vol. 288, 2nd edition, Springer, Berlin 2003.
  • [29] Z. J. Jurek and D. J. Mason, Operator-limit Distributions in Probability Theory, Wiley, New York 1993.
  • [30] R. L. Karandikar, A.s. approximation results for multiplicative stochastic integrals, in: Séminaire de Probabilitb (Strasbourg), tome 16, Lecture Notes in Math. No 920, Springer, Berlin 1982a, pp. 384-391.
  • [31] R. L. Karandikar, Multiplicative decomposition of non-singular matrix valued continuous semimartingales, Ann. Probab. 10 (1982b), pp. 1088-1091.
  • [32] R. L. Karandikar, Multiplicative decomposition of nonsingular matrix valued semimartingales, in: Séminaire de Probabilitb (Strasbourg), tome 25, Lecture Notes in Math. No 1485, Springer, Berlin 1991, pp. 262-269.
  • [33] P. Lévy, The arithmetical character of the Wishart distribution, Proc. Cambridge Philos. Soc. 44 (1948), pp. 123-124.
  • [34] C.-K. Li and S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), pp. 591405.
  • [35] C.-K. Li, L. Rodman and P. Semrl, Linear maps on selfadjoint operators preserving invertibility, positive definiteness, numerical range, Canad. Math. Bull. 46 (2003), pp. 216-228.
  • [36] C. Lindberg, Portfolio Optimization and Statistics in Stochastic Volatility Markets, PhD thesis, Department of Mathematical Sciences, Division of Mathematical Statistics, Chalmers University of Technology and Goteborg University, Goteborg, Sweden, 2005.
  • [37] M. B. Marc us and J. Rosiński, Continuity and boundedness of infinitely divisible processes: a Poisson point process approach, J. Theoret. Probab. 18 (2005), pp. 109-160.
  • [38] T. Marquardt and R. Stelzer, Multivariate CARMA processes, Stochastic Process. Appl. 117 (2007), pp. 96-120.
  • [39] M. Métivier, Semimartingales: a Course on Stochastic Processes, de Gruyter Stud. Math., Vol. 2, Walter de Gruyter, Berlin 1982.
  • [40] V. Perez-Abreu and A. Rocha-Arteaga, Covariance-parameter Lévy processes in the space of trace-class operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005), pp. 33-54.
  • [41] G. Peskir, A change-of-variables formula with local time on curves, J. Theoret. Probab. 18 (2005), pp. 499-535.
  • [42] S. Pierce, M. H. Lim, R. Loewy, C. K. Li, N. K. Tsing, B. McDonald and L. Beasley, A survey of linear preserver problems, Linear Multilinear Algebra 33 (1992), pp. 1-129.
  • [43] P. Protter, Stochastic Integration and Differential Equations, Stoch. Model. Appl. Probab., Vol. 21, 2nd edition, Springer, New York 2004.
  • [44] A. Rocha-Arteaga, Subordinators in a class of Banach spaces, Random Oper. Stochastic Equations 14 (2006), pp. 1-14.
  • [45] L. C. 6. Rogers and D. Williams, Diffusions, Markov Processes and Martingales – Volume 2: It6 Calculus, 2nd edition, Cambridge University Press, 2000.
  • [46] W. Rudin, Principles of Mathematical Analysis, 3rd edition, McGraw-Hill, Singapore 1976.
  • [47] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., Vol. 68, Cambridge University Press, 1999.
  • [48] K. Sato and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1984), pp. 73-100.
  • [49] H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965), pp. 11-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3b51219-4a19-4c91-82f2-c2cc58a123ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.