PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative and Qualitative Evaluation of Non-Metallic Inclusions in High-Silicon Steel after Hot Rolling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of non-metallic inclusions occurring in high-silicon steels containing about 3% Si of terms of their type, volume fraction and morphology. The inclusions were divided into 3 main groups: oxides, sulfides, nitrides which together can also form complex. The work was based on numerous metallographic observations in two sections (longitudinal and transverse to the rolling direction). The study was performed on three casts differing in chemical composition. The analyzed casts were characterized by a different content of non-metallic inclusions, which can be associated with slight differences in chemical composition. The analyzed results showed that the most common inclusions were oxides and nitrides. Sulfides occurred sporadically.
Twórcy
  • ArcelorMittal Poland S.A. Unit in Krakow, Tadeusza Sendzimira 1 Str., 31-752 Krakow, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Computer Science, AGH Doctoral School, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] X. Zhang, S. Pirker, M. Saeedipour, Investigation of Inclusion Removal at Steel-Slag Interface toward a Small-Scale Criterion for Particle Separation. Steel Research 94 (2200842), (2023). DOI: https://doi.org/10.1002/srin.202200842
  • [2] T. Alatarvas, R. Podor, E.P. Heikkinen, Q. Shu, H. Singh, Revealing the Kinetics of Non-metallic Inclusion Reactions in Steel using In-situ High Temperature Environmental Scanning Electron Microscopy. Materials & Design (2023). DOI: https://doi.org/10.1016/j.matdes.2023.112139
  • [3] X. Zhu, W. Wan, L. Qian, Y. Cai, X. Chen, P. Zhang, G. Huang, B. Liu, Q. Yao, S. Li, Z. Yao, Research on Intelligent Identification and Grading of Nonmetallic Inclusions in Steels Based on Deep Learning. Micromachines 14 (2), 482 (2023). DOI: https://doi.org/10.3390/mi14020482
  • [4] S. Luo, K. Li, W. Wang, M. Zhu, Numerical simulation of macrosegregation in continuously cast slab with application of S-EMS and MR. Journal of Materials Research and Technology 24, 6893-6907 (2023). DOI: https://doi.org/10.1016/j.jmrt.2023.04.258
  • [5] S. Piva, A. Nogueira Assis, P. Ch. Pistorius, M. Kan, Calcium-Treated Steel Cleanliness Prediction Using High-Dimensional Steelmaking Process Data. Integrating Materials and Manufacturing Innovation 12, 171-184 (2023). DOI: https://doi.org/10.1007/s40192-023-00300-y
  • [6] D. Liu, Z. Xue, S. Song, Effect of cooling rate on non-metallic inclusion formation and precipitation and micro-segregation of Mn and Al in Fe-23Mn-10Al-0.7C steel. Journal of Materials Reaserch and Technology 24, 4967-4979 (2023). DOI: https://doi.org/10.1016/j.jmrt.2023.04.024
  • [7] B. Pawłowski, J. Krawczyk, The effect of non-metallic inclusions on mechanical properties of a toughned hypoeutectoid low-alloy steel. Archives of Metallurgy and Materials 55 (1), (2010).
  • [8] J. Krawczyk, B. Pawłowski, The effect of non-metallic inclusions on the crack propagation impact energu of toughned 35B2+Cr steel. Metallurgy and Foundry Engineering 34 (2), (2008).
  • [9] G. Li, L. Wang, H. Wu, Ch. Liu, X. Wang, Z. Cui, Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment. Corrosion Scince 174 (108815), (2020). DOI: https://doi.org/10.1016/j.corsci.2020.108815
  • [10] E. Sidorova, A. Karasev, D. Kuznetsov, P.G. Jonsson, Investigation of the Initial Corrosion Destruction of a Metal Matrix around Different Non-Metallic Inclusions on Surfaces of Pipeline Steels. Materials 15, 2530 (2022). DOI: https://doi.org/10.3390/ma15072530
  • [11] K. Jenkins, M. Lindenmo, Precipitates in electrical steels. Journal of Magnetism and Magnetic Materials 320, 2423-2429 (2008). DOI: https://doi.org/10.1016/j.jmmm.2008.03.062
  • [12] M. Fernandes, J.C. Pires, N. Cheung, A. Garcia, Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel. Materials Characterization 51, 301-308 (2003). DOI: https://doi.org/10.1016/j.matchar.2004.01.003
  • [13] Y. Liu, C. Zhu, L. Huang, X. Chen, G. Li, Influence of Inclusions on Magnetic Properties of Al-Killed Non-oriented Silicon Steels. Magnetic Materials for Multifunctional Application (2022). DOI: https://doi.org/10.1007/s11837-022-05333-w
  • [14] F.L. Alcântara, R. Barbosa, M.A. Cunha, Study of Aluminium Nitride Precipitation in Fe-3%Si Steel. Materials Research 16(5), 1039-1044 (2013). DOI: https://doi.org/10.1590/S1516-14392013005000090
  • [15] X. Zang, Ch. Liu, J. Qiu, Y. Wang, Effect of Al content on the agglomeration behavior of inclusions in high Al steel. Journal of Materials Reaserch and Technology 25, 2251-2260 (2023). DOI: https://doi.org/10.1016/j.jmrt.2023.06.087
  • [16] S. Biorosca, A. Nadoum, D. Hawezy, F. Robinson, W. Kockelmann, Mechanistic approach of Goss abnormal grain growth in electrical steel: Theory and argument. Acta Materialia 185, 370-381 (2020). DOI: https://doi.org/10.1016/j.actamat.2019.12.023
  • [17] C. Yilmaz, M. Poul, L. Lahn, D. Raabe, S. Zaefferer, Dislocation-assisted Particle Dissolution: A New Hypothesis for Abnormal Growth of Goss Grains in Grain-oriented Electrical Steels. Acta Materialia, (2023). DOI: https://doi.org/10.1016/j.actamat.2023.119170
  • [18] Q. Gao, J. Li, X. Wang, J. Gong, B. Li, Characteristic of Precipitate Evolution during High Temperature Annealing in Grain-Oriented Silicon Steel. Metals 12, 824, (2022). DOI: https://doi.org/10.3390/met12050824
  • [19] H. Liu, S. Yao, Y. Sun, F. Gao, H. Song, G. Liu, D. Geng, Z. Liu, G. Wang, Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting. Materials Characterization 106, 273-282 (2015). DOI: http://dx.doi.org/10.1016/j.matchar.2015.06.010
  • [20] C. Zhu, Y. Liu, Y. Xiao, W. Yan, G. Li, A New Review on Inclusion and Precipitate Control in Grain-Oriented Silicon Steels. The Minerals, Metals & Materials Society (2022). DOI: https://doi.org/10.1007/s11837-022-05345-6
  • [21] A. Wac-Włodarczyk, Materiały magnetyczne. Modelowanie i zastosowania, Politechnika Lubelska, Lublin (2012).
  • [22] F.G. Wilson, T. Gladman, Aluminium nitride in steel. International Materials Reviews 5 (33), 221-286 (1988). DOI: https://doi.org/10.1179/imr.1988.33.1.221
  • [23] H. Adrian, Thermodynamic model for precipitation of car-bonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium. Materials Science and Technology 8, 406-420 (1992). DOI: https://doi.org/10.1179/mst.1992.8.5.406
  • [24] X. Zhu, W. Wan, L. Qian, Y. Cai, X. Chen, P. Zhang, G. Huang, B. Liu, Q. Yao, S. Li, Z. Yao, Research on Intelligent Identification and Grading of Nonmetallic Inclusions in Steels Based on Deep Learning. Micromachines (2023). DOI: https://doi.org/10.3390/mi14020482
  • [25] V. Vodárek, A. Volodarskaja, S. Miklušová, J. Holešinský, O. Žáček, Precipitation Reactions in a Copper - Bearing GOES. Procedia Materials Science 12, 77-82 (2016). DOI: https://doi.org/10.1016/j.mspro.2016.03.014
Uwagi
The Ministry of the Education and Science financed this work within the 5th edition of the Implementation PhD programme. The authors of this study would like to thank Ms. Katarzyna Lech for help in this research.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3ade15d-3222-46cb-bef7-0aafd9e2e23e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.