PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Changes of albumin secondary structure after palmitic acid binding : FT-IR spectroscopic study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Albumin is an universal transport protein. Plasma pool of free fatty acids arising from triglyceride hydrolysis, critical in energy metabolism and etiology of metabolic disorders is transported by albumin. According to various studies albumin has from seven to nine binding sites with diverse affinity to long chain fatty acids. X-ray diffraction crystallography measurements have provided data only for pure human serum albumin or albumin with fully saturated binding sites. These results have shown that amount of -helices is higher after fatty acids binding. Molecular mechanics simulations suggest that binding of fatty acids in two high-affinity sites leads to major conformational changes in albumin structure. The aim of this research was to investigate albumin secondary structure upon gradually increasing fatty acids to protein mole ratio. Methods: Fourier transform infrared spectroscopy was applied to study changes of bovine serum albumin (as an analogue of human serum albumin) -helical structures after binding palmitic acid in a range of 0–20 palmitic acid: albumin molar ratios representing pure protein, partial, full saturation and excess binding sites capacity. Results: Amount of -helices was increasing along with the amount of palmitic acid: bovine serum albumin molar ratio and reached maximum value around 2 mol/mol. Conclusions: Our studies confirmed molecular mechanics simulations and crystallographic studies. Palmitic acid binding in two high-affinity sites leads to major structural changes, filling another sites only slightly influenced bovine serum albumin secondary structure. The systematic study of fatty acids and albumin interactions, using an experimental model mimicking metabolic disorders, may results in new tools for personalized nanopharmacotherapy.
Rocznik
Strony
59--64
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław, Poland
autor
  • Jagiellonian University Medical College, Department of Analytical Biochemistry, Kraków, Poland
  • Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław, Poland
Bibliografia
  • [1] BASIAGA S.B., HAGE D.S., Chromatographic studies of changes in binding of sulfonylurea drugs to human serum albumin due to glycation and fatty acids, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878, 3193–3197.
  • [2] BHATTACHARYA A.A., GRÜNE T., CURRY S., Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin, J. Mol. Biol., 2000, 303, 721–732.
  • [3] BHUSHAN B., DUBEY P., KUMAR S.U., SACHDEV A., MATAI I., GOPINATH P., Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy, RSC Advances, 2015, 5, 12078–12086.
  • [4] BOIX M., ESLAVA S., COSTA MACHADO G., GOSSELIN E., NI N., SAIZ E., DE CONINCK J., ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics, J. Biomed. Mater Res. A, 2015, 103, 3493–3502.
  • [5] CARUSO MV., SERRA R., PERRI P., BUFFONE G., CALIÒ FG., DE FRANCISCIS S., FRAGOMENI F., A computational evaluation of sedentary lifestyle effects on carotid hemodynamics and atherosclerotic events incidence, Acta Bioeng Biomech, 2017, 19, 42–52.
  • [6] CHARBONNEAU D.M., TAJMIR-RIAHI H.A., Study on the interaction of cationic lipids with bovine serum albumin, J. Phys. Chem. B, 2010, 114, 1148–1155.
  • [7] CISTOLA D.P., SMALL D.M., HAMILTON J.A., Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. I. The filling of individual fatty acid binding sites, J. Biol. Chem., 1987, 262, 10971–10979.
  • [8] CURRY S., BRICK P., FRANKS N.P., Fatty acid binding to human serum albumin: new insights from crystallographic studies, Biochim. Biophys. Acta, 1999, 1441, 131–140.
  • [9] CURRY S., MANDELKOW H., BRICK P., FRANKS N., Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites, Nat. Struct. Biol., 1998, 5, 827–835.
  • [10] DEMIGNOT S., BEILSTEIN F., MOREL E., Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders, Biochimie, 2014, 96, 48–55.
  • [11] EBBERT J.O., JENSEN M.D., Fat depots, free fatty acids, and dyslipidemia, Nutrients, 2013, 5, 498–508.
  • [12] ERUKULA S.V., SRIVARI Y., CHATTERJEE P., Factors influencing the fabrication of albumin-bound drug nanoparticles (ABDns): Part II. Albumin-bound carbamazepine nanoparticles (ABCns), J. Microencapsul., 2016, 33, 524–534.
  • [13] FANALI G., DI MASI A., TREZZA V., MARINO M., FASANO M., ASCENZI P., Human serum albumin: from bench to bedside, Mol. Aspects Med., 2012, 33, 209–290.
  • [14] FUJIWARA S.I., AMISAKI T., Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method, Biophys. J., 2008, 94, 95–103.
  • [15] FUJIWARA S.I., AMISAKI T., Fatty acid binding to serum albumin: molecular simulation approaches, Biochim. Biophys. Acta, 2013, 1830, 5427–5434.
  • [16] GIACOMELLI C.E., NORDE W., The adsorption-desorption cycle. Reversibility of the BSA-silica system, J. Colloid Interface Sci., 2001, 233, 234–240.
  • [17] GRDADOLNIK J., MARÉCHAL Y., Bovine serum albumin observed by infrared spectrometry. II. Hydration mechanisms and interaction configurations of embedded H2O molecules, Biopolymers, 2001, 62, 54–67.
  • [18] JIN J.L., GUO Y.L., LI J.J., Plasma free fatty acids in relation with the severity of coronary artery disease in non-diabetics: A Gensini score assessment, IJC Metab. Endocr., 2017, 14, 48–52.
  • [19] LEGGIO C., GALANTINI L., KONAREV P.V., PAVEL N.V., Urea-induced denaturation process on defatted human serum albumin and in the presence of palmitic acid, J. Phys. Chem. B, 2009, 113, 12590–12602.
  • [20] LIU K.Z., SHAW R.A., MAN A., DEMBINSKI T.C., MANTSCH H.H., Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy, Clin. Chem., 2002, 48, 499–506.
  • [21] LU R., LI W.W., KATZIR A., RAICHLIN Y., YU H.Q., MIZAIKOFF B., Probing the secondary structure of bovine serum albumin during heat-induced denaturation using midinfrared fiberoptic sensors, Analyst, 2015, 140, 765–770.
  • [22] MURAYAMA K., TOMIDA M., Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy, Biochemistry, 2004, 43, 11526–11532.
  • [23] NAIK P.N., NANDIBEWOOR S.T., CHIMATADAR S.A., Noncovalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV–Vis, FT-IR, voltammetric and molecular modelling, J. Pharm. Anal., 2015, 5, 143–152.
  • [24] OTZED D.E., Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature, Biophys. J., 2002, 83, 2219–2230.
  • [25] PARKER W., SONG P.S., Protein structures in SDS micelleprotein complexes, Biophys. J., 1992, 61, 1435–1439.
  • [26] SCHWINTÉ P., BALL V., SZALONTAI B., HAIKEL Y., VOEGEL J.C., SCHAAF P., Secondary structure of proteins adsorbed onto or embedded in polyelectrolyte multilayers, Biomacromolecules, 2002, 3, 1135–1143.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3ab95ec-2d60-4151-8ca5-b09084be2181
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.