Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The polymer membranes containing 18 wt% of cellulose acetate and different amounts of polyvinylpyrrolidone (PVP) as a cross-linker agent were used in the process of iron and copper ions removal from liquid phase. Depending on the content of PVP (changed from 1 to 4 wt.%) the membrane surfaces were characterised by different hydrophilic character and showed the dominant presence of surface oxygen-containing groups of acidic character. Irrespectively of the concentrations of solvents from which the metal ions had to be removed, the membranes showed better ability to remove Fe3+ ions than Cu2+ ones, and the membrane resistances decreased with increasing content of PVP. After the filtrations of solutions with iron ions the flux recovery ratio took rather high values; this ratio increased with increasing PVP content in the membrane.
Czasopismo
Rocznik
Tom
Strony
104--110
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, Umultowska 89b, 61-614 Poznań, Poland
autor
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, Umultowska 89b, 61-614 Poznań, Poland
Bibliografia
- 1. Zorita, I., Apraiz, I., Ortiz-Zarragoitia, M., Orbea, A., Cancio, I., Soto, M., Marigomez, I. & Cajaraville, M.P. (2007). Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms. Environ. Pollut. 148, 236–250. DOI: 10.1016/j.envpol.2006.10.022.
- 2. Guo, G., Wu, F., Xie, F. & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. 24(3), 410–418. DOI: 10.1016/S1001-0742(11)60762-6.
- 3. Seinfeld, J.H. & Pandis, S.N. (2006). Atmospheric Chemistry and Physic (2nd ed.). New Jersey, USA: John Wiley & Sons.
- 4. Lewis, M. & Pryor, R. (2013). Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: Review and database value to resource sustainability. Environ. Pollut. 180, 345–367. DOI: 10.1016/j.envpol.2013.05.001.
- 5. Camargo, J.A. & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849. DOI: 10.1016/j.envint.2006.05.002.
- 6. Khan, S., Shahnaz, M., Jehan, N., Rehman, S., Shah, M. T. & Din, I. (2013). Drinking water quality and human health risk in Charsadda district, Pakistan. J. Clean. Prod. 60, 93–101. DOI: 10.1016/j.jclepro.2012.02.016.
- 7. Ostolska, I. & Wiśniewska, M. (2015). Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers. J. Hazard. Mater. 290, 69–77. DOI: 10.1016/j.jhazmat.2015.02.068.
- 8. Wiśniewska, M., Nosal-Wiercińska, A., Dąbrowska, I. & Szewczuk-Karpisz, K. (2013). Effect of the solid pore size on the structure of polymer film at the metal oxide/polyacrylic acid solution interface – Temperature impact. Micropor. Mesopor. Mater. 175, 92–98. DOI: 10.1016/j.micromeso.2013.03.032.
- 9. Wiśniewska, M., Ostolska, I., Szewczuk-Karpisz, K. & Nosal-Wiercińska, A. (2015). Adsorption and Stability Properties of Aqueous Suspension of Chromium (III) Oxide in the Presence of Synthetic and Natural Polymers: Possibilities of Solid Removal. Adsorpt. Sci. Technol. 33, 639–700. DOI: 10.1260/0263-6174.33.6-8.693.
- 10. Nowicki, P., Kazmierczak-Razna, J. & Pietrzak, R. (2016). Physicochemical and adsorption properties of carbonaceous sorbents prepared by activation of tropical fruit skins with potassium carbonate. Mater. Design. 90, 579–585. DOI: 10.1016/j.matdes.2015.11.004.
- 11. Nowicki, P., Bazan, A., Kazmierczak-Razna, J. & Pietrzak, R. (2015). Sorption Properties of Carbonaceous Adsorbents Obtained by Pyrolysis and Activation of Pistachio Nut Shells. Adsorpt. Sci. Technol. 33(6–8), 581–586. DOI: 10.1260/0263-6174.33.6-8.581.
- 12. Nowicki, P., Supłat, M., Przepiórski, J. & Pietrzak, R. (2012). NO2 removal on adsorbents obtained by pyrolysis and physical activation of cardboard. Chem. Eng. J. 195–196, 7–14. DOI: 10.1007/s10450-015-9729-x. DOI: 10.1016/j.cej.2012.04.073.
- 13. Nowicki, P., Szymanowski, W. & Pietrzak, R. (2015). Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes. Pol. J. Chem. Technol. 17(4), 120–127. DOI: 10.1515/pjct-2015-0078.
- 14. Jasiewicz, K. & Pietrzak, R. (2013). The influence of pore generating agent on the efficiency of copper and iron ions removal from liquid phase by polyethersulfone membranes. Chem. Eng. J. 228, 449–454. DOI: 10.1016/j.cej.2013.05.005.
- 15. Wei, P., Zhang, K., Gao, W., Kong, L. & Field, R. (2013). CFD modeling of hydrodynamics characteristics of slug bubble flow in a flat sheet membrane bioreactor. J. Membr. Sci. 445, 15–24. DOI: 10.1016/j.memsci.2013.05.036.
- 16. Matos, M., Suarez, M.A., Gutierrez, G., Coca, J. & Pazos, C. (2013). Emulsification with microfiltration ceramic membranes: A different approach to droplet formation mechanism. J. Membr. Sci. 444, 345–358. DOI: 10.1016/j.memsci.2013.05.033.
- 17. Han, J., Cho, Y.H., Kong, H., Han, S. & Park, H.B. (2013). Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications. J. Membr. Sci. 428, 533–545. DOI: 10.1016/j.memsci.2012.10.043.
- 18. Qdais, H.A. & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164, 105–110. DOI: 10.1016/S0011-9164(04)00169-9.
- 19. Lee, K.J., Mower, R., Hollenbeck, T., Castelo, J., Johnson, N., Gordon, P., Sinko P.J., Holme, K. & Lee, Y.H. (2003). Modulation of Nonspecific Binding in Ultrafiltration Protein Binding Studies. PHrm. Res. 7, 1015–1021. DOI: 10.1023/A:1024406221962.
- 20. Lobo, A., Cambiella, A., Benito, J.M., Pazos, C. & Coca, J. (2006). Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity. J. Membr. Sci. 278, 328–334. DOI: 10.1016/j.memsci.2005.11.016.
- 21. Purkait, M.K., DasGupta, S. & De, S. (2004). Removal of dye from wastewater using mecellar-enhanced ultrafiltration and recovery of surfactant. Sep. Purif. Technol. 37, 81–92. DOI: 10.1016/j.seppur.2003.08.005.
- 22. Zarębska, A. et al. Anna Narębska, Piotr Adamczak, Stanisław Koter, Wojciech Kujawski, Andrzej Warszawski, Marek Staniszewski, Grzegorz Sionkowski (1997). Membrany i membranowe techniki rozdziału (in Polish). Toruń, Polska: Wydaw. UMK.
- 23. Hendrix, K., Vaneynde, M., Koeckelberghs, G. & Vankelecom, I.F.J. (2013). Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion. J. Membr. Sci. 447, 96–106. DOI: 10.1016/j.memsci.2013.07.006.
- 24. Wu, Z., Faiz, R., Li, T., Kingsbury, B.F.K. & Li, K. (2013). A controlled sintering process for more permeable ceramic hollow fibre membranes. J. Membr. Sci. 446, 286–293. DOI: 10.1016/j.memsci.2013.05.040.
- 25. Tabatabaei, S.H., Carreau, P.J. & Ajji, A. (2009). Microporous membranes obtained from PP/HDPE multilayer films by stretching. J. Membr. Sci. 345, 148–159. DOI: 10.1016/j.memsci.2009.08.038.
- 26. Li, N., Xiao, C., An, S. & Hu, X. (2010). Preparation and properties of PVDF/PVA hollow fiber membranes. Desalination 250, 530–537. DOI: 10.1016/j.desal.2008.10.027.
- 27. Rahimpour, A., Madaeni, S.S. & Mansourpanah, Y. (2010). Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in gelation media. J. Membr. Sci. 364, 380–388. DOI: 10.1016/j.memsci.2010.08.046.
- 28. Lalia, B.S., Kochkodan, V., Hashaikeh, R. & Hilah, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326, 77–95. DOI: 10.1016/j.desal.2013.06.016.
- 29. Sairam, M., Sereewatthanawut, E., Li, K., Bismarck, A. & Livingston, A.G. (2011). Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-Desalination using MgSO4 draw solution. Desalination 273, 299–307. DOI: 10.1016/j.desal.2011.01.050.
- 30. Hołda, A.K., Aernouts, B., Saeys, W. & Vankelecom, I.F.J. (2013) Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. Membr. Sci. 442, 196–205. DOI: 10.1016/j.memsci.2013.04.017.
- 31. Cao, J.H., Zhu, B.K., Ji, G.L. & Xu, Y.Y. (2005). Preparation and characterization of PVDF-HFP microporous flat membranes by supercritical CO2 induced phase separation. J. Membr. Sci. 266, 102–109. DOI: 10.1016/j.memsci.2005.05.015.
- 32. Ren, J., Zhou, J. & Deng, M. (2010). Morphology transition of asymmetric flat sheet and thickness-gradient membranes by wet phase-inversion process. Desalination 253, 1–8. DOI: 10.1016/j.desal.2009.12.001.
- 33. Foy, S.P. & Labhasetwar, V. (2011). Oh the irony: Iron as a a cancer cause or cure? Biomaterials 32, 9155–9158. DOI:10.1016/j.biomaterials.2011.09.047.
- 34. Walter, U. (2010). Transcranial Sonography in Brain Disorders with Trace Metal Accumulation. Int. Rev. Neurobiol. 90, 166–178. DOI: 10.1016/S0074-7742(10)90012-3.
- 35. Kang, Y.J. (2011). Copper and homocysteine in cardiovascular diseases. PHrmacol. Ther. 129, 321–331. DOI: 10.1016/j.pHrmthera.2010.11.004.
- 36. Rines, A.K. & Ardehali, H. (2013). Transition metals and mitochondrial metabolism in the heart. J. Mol. Cell. Cardiol. 55, 50–57. DOI: 10.1016/j.yjmcc.2012.05.014.
- 37. Hofman, M. & Pietrzak, R. (2011). Adsorbents obtained from waste tires for NO2 removal under dry conditions at room temperature. Chem. Eng. J. 170, 202–208. DOI: 10.1016/j.cej.2011.03.054.
- 38. Li, N. N., Fane, A.G., Winston, Ho, W.S. & Matsuura, T. (2008). Advanced membrane technology and applications. New Jersey, USA: John Wiley & Sons.
- 39. Basile, A. & Gallucci, F. (2011). Membranes for Membrane Reactors. Preparation, Optimalization and Selection. Chichester, UK: John Wiley & Sons.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3a96e6c-693c-49c0-a846-a78b12a0f78d