Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
Intending to minimize the cost of production of pipes intended for construction and building activities and waste recycling, this research studies the physical and mechanical characteristics of high-performance polypropylene random (PPR), a new material extracted from a homopolymer polypropylene. The PPR was filled with untreated and treated wood flour (WF) particles at various content levels 10, 20, 30, and 40 wt.%. The density, melt flow rate, tensile strength, tensile strain, modulus of elasticity, and hardness are used to evaluate the quality of the material. The hydrophobic character of WF resulted from degradation in the physical and mechanical properties. The results showed that the density, the modulus of elasticity, and the hardness increased with the percentage of treated wood flour (TWF). As the percentage of WF increased, the melt flow rate decreased. The tensile strength and strain increased to 27.7 MPa and 543.25%, respectively at 20 wt.% of WF, with 14.8% and 6.65% reached gains compared to the untreated wood flour composites (UWFC) (24.04 MPa and 495.6%). The enhancement of the mechanical properties is thanks to the formed strong links between the particles of WF and the PPR after the thermal and alkaline treatment with sodium hydroxide (NaOH). The removal of hydroxyl groups in the TWF enhances the interfacial bonding between the filler and the PP matrix in the resulting composites. When WF is treated, it is well dispersed; and facilitates the transfer of stress from the matrix to the fillers. The optimum percentage of WF to add into the inner layer of PPR pipes is at a composition of the filler of 20 wt.%.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
355--368
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Laboratory of Innovative Materials and Mechanical Manufacturing Processes, ENSAM-Meknes, Moulay Ismail University, Marjane 2, BP: 15290, Meknes 50500, Morocco
autor
- Laboratory of Innovative Materials and Mechanical Manufacturing Processes, ENSAM-Meknes, Moulay Ismail University, Marjane 2, BP: 15290, Meknes 50500, Morocco
autor
- Laboratory of Innovative Materials and Mechanical Manufacturing Processes, ENSAM-Meknes, Moulay Ismail University, Marjane 2, BP: 15290, Meknes 50500, Morocco
autor
- Functional Ecology and Environmental Engineering Laboratory, FST-Fes, Sidi Mohammed Ben Abdellah University, Immouzer Road, BP: 2202, Fez 30000, Morocco
autor
- Laboratory of Electrical Energy, Maintenance and Innovation, ENSAM-Meknes, Moulay Ismail University, Marjane 2, BP: 15290, Meknes 50500, Morocco
Bibliografia
- 1. Aboul-Enein, A.A., Ahmed M. Haggar, Ahmed E. Awadallah, et Mostafa A. Azab. 2024. Synthesis of polypropylene waste-derived graphene sheets in the presence of metal oxide nanoparticles. Materials Chemistry and Physics, 315, 129021. https://doi.org/10.1016/j.matchemphys.2024.129021
- 2. Adhikari, R., Bhandari, N.L., Le, H.H., Henning, S., Radusch, H.‐J., Michler, G.H., Garda, M.‐R., Saiter J.M. 2012. Thermal, mechanical and morphological behavior of poly(propylene)/wood flour composites. Macromolecular Symposia, 315(1), 24–29. https://doi.org/10.1002/masy.201250503
- 3. Al Maadeed, M.A., Kahraman, R., Khanam P.N., Madi N. 2012. Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Materials & Design, 42, 289–94. https://doi.org/10.1016/j.matdes.2012.05.055
- 4. Arao, Y., Nakamura, S., Tomita, Y., Takakuwa, K., Umemura, T., Tanaka T. 2014. Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polymer Degradation and Stability, 100, 79–85. https://doi.org/10.1016/j.polymdegradstab.2013.12.022
- 5. Baek, C.S., Cho K.H., Ahn J.-W. 2014. Effect of grain size and replacement ratio on the plastic properties of precipitated calcium carbonate using limestone as raw material. Journal of the Korean Ceramic Society, 51. https://doi.org/10.4191/kcers.2014.51.2.127
- 6. Berzin, F., Amornsakchai, T., Lemaitre, A., Di Giuseppe. E., Vergnes B. 2018. Processing and properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusion. Polymer Composites 39(11), 3817–4223. https://doi.org/10.1002/pc.24475
- 7. Butylina, S., Ossi M., Timo K. 2011. Properties of wood fibre-polypropylene composites: Effect of wood fibre source. Applied Composite Materials, 18(2), 101–11. https://doi.org/10.1007/s10443-010-9134-2
- 8. Chen, X., Ai, Y., Wu, Q., Cheng, S., Wei, Y., Xu, X., Fan T. 2023. Potential use of nano calcium carbonate in polypropylene fiber reinforced recycled aggregate concrete: Microstructures and properties evaluation. Construction and Building Materials, 400, 132871. https://doi.org/10.1016/j.conbuildmat.2023.132871
- 9. Choobbasti, A.J., Samakoosh, M.A., Kutanaei, S.S. 2019. Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Construction and Building Materials, 211, 1094–1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306
- 10. Dlova, S., Ayeleru, O.O., Adams F.V., Mamo M.A., Olubambi P.A. 2021. Recycled plastics as an alternative carbon nanotubes source by chemical vapor deposition. International Journal of Engineering Research in Africa, 55, 207–23. https://doi.org/10.4028/www.scientific.net/JERA.55.207
- 11. Eiras, D., Pessan L.A. 2009. Mechanical s. Materials Research, 12, 517–22. https://doi.org/10.1590/S1516-14392009000400023
- 12. Elleithy, R.H., Ali, I., Ali M.A-H., Al-Zahrani S. 2011. High density polyethylene/micro calcium carbonate composites: A study of the morphological, thermal, and viscoelastic properties. 119. https://doi.org/10.1002/app.33064
- 13. Fan, Y., Zhang, C., Xue, Y., Nie, W., Zhang, X., Ji, X., Bo, S. 2009. Effect of copolymerization time on the microstructure and properties of polypropylene/poly (ethylene-co-propylene) in-reactor alloys. Polymer Journal, 41(12), 1098–1104. https://doi.org/10.1295/polymj.PJ2009150
- 14. Feng, J., Yang, F., Qian, S. 2021. Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification. Construction and Building Materials, 269, 121249. https://doi.org/10.1016/j.conbuildmat.2020.121249
- 15. García-Peñas, A., Gómez-Elvira, J.M., Lorenzo, V., Pérez, E., Cerrada M.L. 2017. Unprecedented dependence of stiffness parameters and crystallinity on comonomer content in rapidly cooled propyleneco-1-pentene copolymers. Polymer, 130, 17–25. https://doi.org/10.1016/j.polymer.2017.10.006
- 16. Hajibeygi, M., Mousavi, M., Shabanian, M., Habibnejad, N., Vahabi H. 2021. Design and preparation of new polypropylene/magnesium oxide micro particles composites reinforced with hydroxyapatite nanoparticles: A study of thermal stability, flame retardancy and mechanical properties. Materials Chemistry and Physics, 258, 123917. https://doi.org/10.1016/j.matchemphys.2020.123917
- 17. Harding, G., Van Reenen A. 2006. Fractionation and characterisation of propylene‐ethylene random copolymers: effect of the comonomer on crystallisation of poly(propylene) in the γ‐Phase ». Macromolecular Chemistry and Physics, 207, 1680–90. https://doi.org/10.1002/macp.200600242
- 18. Huang, Z., Lin, Z., Cai, Z., Mai K. 2004. Physical and mechanical properties of nano-CaCO3/PP composites modified with acrylic acid. Plastics, Rubber and Composites, 33(8), 343–52. https://doi.org/10.1179/174328904X22314
- 19. Ichazo, M.N., Albano, C., González, J., Perera, R., Candal, M.V. 2001. Polypropylene/wood flour composites: treatments and properties. Composite Structures, Third International Conference on Composite Science and Technology, 54(2), 207–14. https://doi.org/10.1016/S0263-8223(01)00089-7
- 20. Bicy, K., Anu, P.P, Kalarikkal, N., Arul M.S., Geethamma, V.G, Didier, R., Sabu, T. 2021. Effects of nanofillers on morphology and surface wetting of microporous polypropylene composite membranes. Materials Chemistry and Physics, 257, 123742. https://doi.org/10.1016/j.matchemphys.2020.123742
- 21. Kada, D., Migneault, S., Tabak, G., Koubaa A. 2015. Physical and mechanical properties of polypropylene-wood-carbon fiber hybrid composites. BioResources, 11(1), 1393–1406. https://doi.org/10.15376/biores.11.1.1393-1406
- 22. Karimah, A., Ridho, M.R., Munawar, S.S., Adi, D.S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., Fudholi A. 2021. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13, 2442–58. https://doi.org/10.1016/j.jmrt.2021.06.014
- 23. Khamtree, S., Ratanawilai, T., Ratanawilai S. 2020. The effect of alkaline–silane treatment of rubberwood flour for water absorption and mechanical properties of plastic composites. Journal of Thermoplastic Composite Materials, 33(5), 599–613. https://doi.org/10.1177/0892705718808556
- 24. Kun, D., Kárpáti, Z., Fekete, E., Móczó J. 2021. The role of interfacial adhesion in polymer composites engineered from lignocellulosic agricultural waste. Polymers, 13(18), 3099. https://doi.org/10.3390/polym13183099
- 25. Lazzeri, A., Zebarjad, S.M., Pracella, M., Cavalier, K., Rosa, R. 2005. Filler toughening of plastics. Part 1—The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer, 46(3), 827–44. https://doi.org/10.1016/j.polymer.2004.11.111
- 26. Lee, S.-Y., Yang, H.-S., Kim, H.-J., Jeong, C.-S., Lim, B.-S., Lee J.-N. 2004. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures 65 (3–4), 459–69. https://doi.org/10.1016/j.compstruct.2003.12.007
- 27. Lima, D.C., De Melo, R.R., Pimenta, A.S., Pedrosa, T.D., De Souza, M.J.C., De Souza, E.C. 2020. Physical–mechanical properties of wood panel composites produced with Qualea sp. sawdust and recycled polypropylene. Environmental Science and Pollution Research, 27(5), 4858–65. https://doi.org/10.1007/s11356-019-06953-7
- 28. Lovinger, A.J. 1983. Microstructure and unit-cell orientation in α-polypropylene. Journal of Polymer Science: Polymer Physics Edition, 21(1), 97–110. https://doi.org/10.1002/pol.1983.180210107
- 29. Lu, J.Z., Wu Q., Negulescu I.I., Chen Y. 2006. The influences of fiber feature and polymer melt index on mechanical properties of sugarcane fiber/polymer composites. Journal of Applied Polymer Science, 102(6), 5607–19. https://doi.org/10.1002/app.24929
- 30. Macedo, L.B., Ferro, F.S., Varanda, L.D., Cavalheiro, R.S., Christoforo, A.L., Lahr, F.A.R. 2015. Propriedades físicas de painéis aglomerados de madeira produzidos com adição de película de polipropileno biorientado. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(7), 674–79.
- 31. Mai, J.H., Zhang, M.Q., Rong, M.Z., Barany, T., Ruan, W.H. 2012. Crystallization behavior and mechanical properties of nano-CaCO3 /β-nucleated ethylene-propylene random copolymer composites. Express Polymer Letters, 6(9), 739–49. https://doi.org/10.3144/expresspolymlett.2012.79
- 32. Müller, P., Renner, K., Móczó, J., Fekete, E., Pukánszky, B. 2014. Thermoplastic starch/wood composites: Interfacial interactions and functional properties. Carbohydrate Polymers, 102, 821–29. https://doi.org/10.1016/j.carbpol.2013.10.083
- 33. Murayama, K., Ueno, T., Kobori, H., Kojima, Y., Suzuki, S., Aoki, K., Ito, H., Ogoe, S., Okamoto M. 2019. Mechanical properties of wood/plastic composites formed using wood flour produced by wet ball-milling under various milling times and drying methods. Journal of Wood Science, 65(1), 5. https://doi.org/10.1186/s10086-019-1788-2
- 34. Olakanmi, E.O., Ogunesan, E.A., Vunain, E., Lafia-Araga, R.A. Doyoyo, M., Meijboom, R. 2016. Mechanism of fiber/matrix bond and properties of wood polymer composites produced from alkalinetreated D Aniella Oliveri wood flour. Polymer Composites 37(9), 2657–72. https://doi.org/10.1002/pc.23460
- 35. Papageorgiou, Dimitrios, G., George, Z. Papageorgiou, Dimitrios, N. Bikiaris, Chrissafis K. 2013. Crystallization and melting of propylene–ethylene random copolymers. Homogeneous nucleation and β-nucleating agents. European Polymer Journal, 49(6), 1577–90. https://doi.org/10.1016/j.eurpolymj.2013.02.002
- 36. Papageorgiou, G., Achilias, D., Bikiaris, D., Karayannidis, G. 2005. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochimica Acta, 427, 117–28. https://doi.org/10.1016/j.tca.2004.09.001
- 37. Peng, Y., Musah, M., Via, B., Wang, X. 2021. Calcium carbonate particles filled homopolymer polypropylene at different loading levels: Mechanical properties characterization and materials failure analysis. Journal of Composites Science, 5(11), 302. https://doi.org/10.3390/jcs5110302
- 38. P.V.S., Prashanth, H., Jayamani, E., Soon, K.H., Wong, Y.C., Rahman, R., Bakri Muhammad K.B. 2021. Interfacial polarization effects on dielectric properties in flax reinforced polypropylene/strontium titanate composites. Materials Chemistry and Physics, 265, 124489. https://doi.org/10.1016/j.matchemphys.2021.124489
- 39. Qiu, W., Mai, K., Zeng H. 2000. Effect of silanegrafted polypropylene on the mechanical properties and crystallization behavior of Talc/polypropylene composites. Journal of Applied Polymer Science, 77, 2974–77. https://doi.org/10.1002/1097-4628(20000923)77:133.0.CO;2-R
- 40. Ray, D., Sarkar, B.K., Basak, R.K., Rana A.K. 2002. Study of the thermal behavior of alkali‐treated jute fibers. Journal of Applied Polymer Science 85(12), 2594–99. https://doi.org/10.1002/app.10934
- 41. Satti, Angel J., Erica C. Molinari, Augusto G.O. de Freitas, Tuckart, W.R., Giacomelli, C., Ciolino, A.E., Vallés, E.M.. 2017. Improvement in abrasive wear resistance of metallocenic polypropylenes by adding siloxane based polymers. Materials Chemistry and Physics, 188, 100–108. https://doi.org/10.1016/j.matchemphys.2016.12.007
- 42. Shang-Guan, Y.G., Chen, F., Zheng Q. 2012. Microstructure, morphology, crystallization and rheological behavior of impact polypropylene copolymer. Science China Chemistry, 55(5), 698–712. https://doi.org/10.1007/s11426-012-4531-z
- 43. Sobczak, L., Lang, R.W., Haider A. 2012. Polypropylene composites with natural fibers and wood – General mechanical property profiles. Composites Science and Technology, 72(5), 550–57. https://doi.org/10.1016/j.compscitech.2011.12.013
- 44. Tabari, H.Z., Nourbakhsh, A., Ashori A. 2011. Effects of nanoclay and coupling agent on the physico‐ mechanical, morphological, and thermal properties of wood flour/polypropylene composites. Polymer Engineering & Science, 51(2), 272–77. https://doi.org/10.1002/pen.21823
- 45. Taşdemır, M., Biltekin, H., Caneba GT. 2009. Preparation and characterization of LDPE and PP—wood fiber composites. Journal of Applied Polymer Science, 112(5), 3095–3102. https://doi.org/10.1002/app.29650
- 46. Thakur, V.K., Thakur, M.K., Gupta, R.K. 2014. Review: Raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization, 19(3), 256–71. https://doi.org/10.1080/1023666X.2014.880016
- 47. Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L. 2016. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62– 73. https://doi.org/10.1016/j.wasman.2016.04.037
- 48. Wibowo, A.H., Crysandi, R., Verdina, A., Makhnunah, N., Wijayanta, A.T., Henning Storz. 2017. Characterization of polypropylene itaconate in divinyl benzene and methylene bisacrylamide. Materials Chemistry and Physics, 186, 552–60. https://doi.org/10.1016/j.matchemphys.2016.11.036
- 49. Xiong, Z., Li, Y., Pan, L., Yu, J., Lu S. 2017. An analytical study of mechanical behavior of polypropylene/calcium carbonate composites under uniaxial tension and three-point bending. Composite Structures, 171, 370–81. https://doi.org/10.1016/j.compstruct.2017.03.054
- 50. Zebarjad, S.M., Tahani, M., Sajjadi S.A. 2004. Influence of filler particles on deformation and fracture mechanism of isotactic polypropylene. Journal of Materials Processing Technology, Proceedings of the International Conference on Advances in Materials and Processing Technologies: Part 2, 155–156, 1459–64. https://doi.org/10.1016/j.jmatprotec.2004.04.187
Identyfikator YADDA
bwmeta1.element.baztech-b3a4d684-96b4-439b-a07f-212276051ae3