PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A preliminary investigation of dry gravity separation with low specific gravity ores using a laboratory Knelson Concentrator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has become an active research area for treating low specific gravity (SG) deposits by centrifugal separation due to its high efficiency, low cost and minor environmental impact. Laboratory Knelson Concentrator has shown its potential for processing high density ores on a dry basis. This study investigated the feasibility and the optimum operating conditions when processing a dry low SG feed with a modified Knelson Concentrator. A synthetic mixture of magnetite and quartz with a grade of 1% magnetite was used to mimic a low-density ratio ore. Bowl speed (G), air fluidizing pressure (psi) and solids feed rate (g/min) were chosen as the operating variables. Box-Behnken design was used to design the experiments and response surface method was used for optimization. The effects of each individual factors and their interactions on concentrate grade and magnetite recovery were evaluated. The dry process achieved up to 60 % magnetite recovery with an upgrade ratio of 5. The optimized values for the concentration with the highest recovery and grade of bowl speed, solids feed rate and air fluidizing pressure are 27 G, 200 g/min and 12 psi, respectively.
Rocznik
Strony
art. no. 165992
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Department of Mining and Materials Engineering, McGill University, MH Wong Building, 3610 University, Montreal, Quebec, H3A 0C5, Canada
  • Department of Mining and Materials Engineering, McGill University, MH Wong Building, 3610 University, Montreal, Quebec, H3A 0C5, Canada
  • Department of Mining and Materials Engineering, McGill University, MH Wong Building, 3610 University, Montreal, Quebec, H3A 0C5, Canada
  • Department of Mining and Materials Engineering, McGill University, MH Wong Building, 3610 University, Montreal, Quebec, H3A 0C5, Canada
Bibliografia
  • AKAR SEN, G., 2016. Application of Full Factorial Experimental Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator. Minerals. 6, 5-16.
  • ALVEZ, A., AITKEN, D., RIVERA, D., VERGARA, M., MCINTYRE, N., CONCHA, F., 2020. At the Crossroads: Can Desalination Be a Suitable Public Policy Solution to Address Water Scarcity in Chile's Mining Zones? J. Environ. Manage. 258, 110039.
  • ANGADI, S.I., ESWARAIAH, C., JEON, H.-S., MISHRA, B.K., MILLER, J.D., 2017. Selection of Gravity Separators for the Beneficiation of the Uljin Tin Ore. Miner. Process. Extr. Metall. Rev. 38, 54-61.
  • BUDNITZ, R.J., HOLDREN, J.P., 1976. Social and Environmental Costs of Energy Systems. Annu. Rev. Environ. Resour. 1, 553-580.
  • BURT, R., KORINEK, G., YOUNG, S., DEVEAU, C., 1995. Ultrafine Tantalum Recovery Strategies. Miner. Eng. 8, 859-870.
  • CHAKER, H., AMEUR, N., SAIDI-BENDAHOU, K., DJENNAS, M., FOURMENTIN, S., 2021. Modeling and Box-Behnken Design Optimization of Photocatalytic Parameters for Efficient Removal of Dye by Lanthanum-Doped Mesoporous Tio2. J. Environ. Chem. Eng. 9, 104584.
  • CHEN, L., REN, N., XIONG, 2008. Experimental Study on Performance of a Continuous Centrifugal Concentrator in Reconcentrating Fine Hematite. Int. J. Miner. Process. 87, 9-16.
  • FERREIRA, S.L.C., BRUNS, R.E., FERREIRA, H.S., MATOS, G.D., DAVID, J.M., BRANDÃO, G.C., DA SILVA, E.G.P., PORTUGAL, L.A., DOS REIS, P.S., SOUZA, A.S., DOS SANTOS, W.N.L., 2007. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 597, 179-186.
  • GHAFFARI, A., FARZANEGAN, A., 2017. An Investigation on Laboratory Knelson Concentrator Separation Performance: Part 2: Two-Component Feed Separation Modelling. Miner. Eng. 112, 114-124.
  • GONÇALVES, C., BRAGA, P., 2016. In-Depth Characterization and Preliminary Beneficiation Studies of Heavy Minerals from Beach Sands in Brazil, The Tenth International Heavy Minerals Conference, Sun City, South Africa.
  • GREENWOOD, M., LANGLOIS, R., WATERS, K.E., 2013. The Potential for Dry Processing Using a Knelson Concentrator. Miner. Eng. 45, 44–46.
  • HABIYAREMYE, A., 2020. Water Innovation in South Africa: Mapping Innovation Successes and Diffusion Constraints. Environ. Sci. Policy. 114, 217-229.
  • JIANG, Y., 2009. China's Water Scarcity. J. Environ. Manage. 90, 3185-3196.
  • JORDENS, A., MARION, C., LANGLOIS, R., GRAMMATIKOPOULOS, T., ROWSON, N.A., WATERS, K.E., 2016. Beneficiation of the Nechalacho Rare Earth Deposit. Part 1: Gravity and Magnetic Separation. Miner. Eng. 99, 111-122.
  • JOSE, N., SENGUPTA, S., BASU, J., 2011. Optimization of Oxidative Desulfurization of Thiophene Using Cu/Titanium Silicate-1 by Box-Behnken Design. Fuel. 90, 626-632.
  • KLEIN, B., ALTUN, N.E., GHAFFARI, H., 2016. Use of Centrifugal-Gravity Concentration for Rejection of Talc and Recovery Improvement in Base-Metal Flotation. Int. J. Miner. Metall. Mater. 23, 859-867.
  • KLEIN, B., ALTUN, N.E., GHAFFARI, H., MCLEAVY, M., 2010. A Hybrid Flotation–Gravity Circuit for Improved Metal Recovery. Int. J. Miner. Process.94, 159-165.
  • KNELSON, B., 1992. The Knelson Concentrator. Metamorphosis from Crude Beginning to Sophisticated World-Wide Acceptance. Miner. Eng. 5, 1091-1097.
  • KNELSON, B., JONES, R., 1994. “A New Generation of Knelson Concentrators” a Totally Secure System Goes on Line. Miner. Eng. 7, 201-207.
  • KÖKKILIÇ, O., LANGLOIS, R., WATERS, K.E., 2015. A Design of Experiments Investigation into Dry Separation Using a Knelson Concentrator. Miner. Eng. 72, 73-86.
  • LAPLANTE, A., WOODCOCK, F., HUANG, L., 2000. Laboratory Procedure to Characterize Gravity-Recoverable Gold. SME. 308, 53-59.
  • LAPLANTE, A.R., HUANG, L., NOAPARAST, M., NICKOLETOPOULOS, N., 1995a. A Philosopher's Stone: Turning Tungsten and Lead into Gold-the Use of Synthetic Ores to Study Gold Gravity Separation. 27th Annual Meeting of Canadian Mineral Processors, Ottawa, pp. 379-394.
  • LAPLANTE, A.R., WOODCOCK, F., NOAPARAST, M., 1995b. Predicting Gravity Separation Gold Recovery. Min. Metall. Explor. 12, 74-79.
  • LING, J.H., 1998. A Study of a Variable Speed 3-in Knelson Concentrator. Ph.D. thesis, McGill University, Montreal.
  • LUO, Z., ZHAO, Y., LV, B., FU, Y., XU, X., CHEN, C., 2019. Dry Coal Beneficiation Technique in the Gas–Solid Fluidized Bed: A Review. Int. J. Coal. Prep. Util. 42, 986-1014.
  • MA, H., KÖKKILIÇ, O., WATERS, K.E., 2017. The Use of the Emulsion Liquid Membrane Technique to Remove Copper Ions from Aqueous Systems Using Statistical Experimental Design. Miner. Eng. 107, 88-99.
  • MACPHERSON, S., GALVIN, K., 2010. The Effect of Vibration on Dry Coal Beneficiation in the Reflux Classifier. Int. J. Coal. Prep. Util. 30, 283-294.
  • MAJUMDER, A.K., TIWARI, V., BARNWAL, J.P., 2007. Separation Characteristics of Coal Fines in a Knelson Concentrator–a Hydrodynamic Approach. Int. J. Coal. Prep. Util. 27, 126-137.
  • MARION, C., LANGLOIS, R., KÖKKILIÇ, O., ZHOU, M., WILLIAMS, H., AWAIS, M., ROWSON, N.A., WATERS, K.E., 2018. A Design of Experiments Investigation into the Processing of Fine Low Specific Gravity Minerals Using a Laboratory Knelson Concentrator. Miner. Eng. 135, 139-155.
  • MONTGOMERY, D.C., 2017. Design and Analysis of Experiments, Ninth Edition. John Wiley & Sons, Hoboken, NJ.
  • OKANIGBE, D., OLAWALE, P., POPOOLA, A., ABRAHAM, A., MICHAEL, A., ANDREI, K., 2018. Centrifugal Separation Experimentation and Optimum Predictive Model Development for Copper Recovery from Waste Copper Smelter Dust. Cogent. Eng. 5, 1551175.
  • PREMARATNE, W.A.P.J., ROWSON, N.A., 2004. Recovery of Titanium from Beach Sand by Physical Separation. Eur. J. Miner. Process. Environ. Prot. 4, 183-193.
  • RUBIERA, F., HALL, S.T., SHAH, C.L., 1997. Sulfur Removal by Fine Coal Cleaning Processes. Fuel. 76, 1187-1194.
  • SAKUHUNI, G., ALTUN, N.E., KLEIN, B., TONG, L., 2016. A Novel Laboratory Procedure for Predicting Continuous Centrifugal Gravity Concentration Applications: The Gravity Release Analysis. Int. J. Miner. Process. 154, 66-74.
  • SAKUHUNI, G., KLEIN, B., ALTUN, N.E., 2015. A Hybrid Evolutionary Performance Improvement Procedure for Optimisation of Continuous Variable Discharge Concentrators. Sep. Purif. Technol. 145, 130-138.
  • SAVAS, M., 2016. Recovery of Colemanite from Tailing Using a Knelson Concentrator. Physicochem. Probl. Miner. Process. 52, 1036-1047.
  • USLU, T., SAHINOGLU, E., YAVUZ, M., 2012. Desulphurization and Deashing of Oxidized Fine Coal by Knelson Concentrator. Fuel Process. Technol. 101, 94-100.
  • VARALA, S., DHARANIJA, B., SATYAVATHI, B., RAO, V.B., PARTHASARATHY, R., 2016. New Biosorbent Based on Deoiled Karanja Seed Cake in Biosorption Studies of Zr (Iv): Optimization Using Box–Behnken Method in Response Surface Methodology with Desirability Approach. Chem. Eng. J. 302, 786-800.
  • XIAO, Z., LAPLANTE, A.R., FINCH, J., 2009. Quantifying the Content of Gravity Recoverable Platinum Group Minerals in Ore Samples. Miner. Eng. 22, 304-310.
  • XIAO, Z., LAPLANTE, A.R., TAN, Y.H., FINCH, J.A., 2021. Characterizing the Behaviour of Platinum Group Minerals in a Grinding Circuit. Miner. Eng. 166, 106863.
  • ZHOU, M., KÖKKILIÇ, O., LANGLOIS, R., WATERS, K.E., 2016. Size-by-Size Analysis of Dry Gravity Separation Using a 3-In. Knelson Concentrator. Miner. Eng. 91, 42-54.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3a00b8d-a0ce-49bc-9c83-43dd0fae56cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.