PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Inverse Solution to the Vertical Plate Cooling by Radiation and Convection in Air

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The inverse solution to the heat flux identification during the vertical plate cooling in air has been presented. The developed solution allowed to separate the energy absorbed by the chamber due to radiation from the convection heat losses to air. The uncertainty tests were carried out and the accuracy of the solution has been estimated at a level of 1%-5% depending on the boundary condition model. The inverse solution was obtained for the temperature measurements in the vertical plate. The stainless-steel plate was heated to 950°C and then cooled in the chamber in air only to about 30°C. The identified heat transfer coefficient was compared with the Churchill and Chu model. The solution has allowed to separate the radiation heat losses and to determine the Nusselt number values that stay in good agreement with the Churchill and Chu model for a nearly steady-state air flow for the plate temperature below 100°C.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] A. Wrożyna, M. Pernach, R. Kuziak, M. Pietrzyk, JMEP 25, 2016-1481 (2016). DOI: https://doi.org/10.1007/s11665-016-1907-9
  • [2] T. Burakowski, Metaloznawstwo i Obróbka cieplna 3, 31-40 (1973).
  • [3] G. Béranger, G. Henry, G. Sanz (Ed.), The book of steel, Intercept Limited, Andover Hampshire U.K. (1996).
  • [4] F. Puschmann, S. Eckehard, Exp. Therm. Fluid Sci. 28, 607-615 (2004). DOI: https://doi.org/10.1016/j.expthermflusci.2003.09.004
  • [5] Q. Bai, J. Lin, L. Zhan, T.A. Dean, D.S. Balint, Z. Zhang, Int. J. Mach. Tool Manuf. 56, 102-110 (2012). DOI: https://doi.org/10.1016/j.ijmachtools.2011.12.005
  • [6] S. Shamasundar, A.A. Tseng, W. Aung, J. Mater. Process. Technol. 36, 199-221 (1993). DOI: https://doi.org/10.1016/0924-0136(93)90031-Z
  • [7] B. Hadała, Int. J. Therm. Sc. 71, 172-181 (2013). DOI: https://doi.org/10.1016/j.ijthermalsci.2013.04.012
  • [8] Z. Malinowski, A. Cebo-Rudnicka, T. Telejko, B. Hadała, A. Szajding, Inverse Probl. Sci. Eng. 23, 518-556 (2015). DOI: https://doi.org/10.1080/17415977.2014.923417
  • [9] Z. Malinowski, J.G. Lenard, M.E. Davies, J. Mat. Proc. Tech. 41, 125-142 (1994). DOI: https://doi.org/10.1016/0924-0136(94)90057-4
  • [10] C. Devadas, IV. Samarasekera, Ironmaking and Steelmaking 13, 311-321 (1986).
  • [11] E. Eckert, T. Jackson, NACA Tech. Rep. (1951).
  • [12] W.H. McAdams, Heat Transmission, McGraw-Hill, New York (1954).
  • [13] M. Schaub, M. Kriegel, S. Brandt, Int. J. Heat Mass Trans. 136, 1186-1198 (2019). DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.089
  • [14] S.W. Churchil, H.H.S. Chu, Int. J. Heat Mass Trans. 18, 1323-1329 (1975). DOI: https://doi.org/10.1016/0017-9310(75)90243-4
  • [15] K. Cao, J. Baker, Int. J. Heat Mass Trans. 90, 26-33 (2015). DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.014
  • [16] A.Ç. Yunus, Heat and mass transfer. McGraw-Hill, New York (2007).
  • [17] A. Goldsmith, T.E. Waterman, H.J. Hirschhorn, Handbook of thermophysical properties of solid materials, vol. 2, Pergamon Press, New York (1962).
  • [18] Z. Malinowski, T. Telejko, B. Hadała, A. Cebo-Rudnicka, A. Szajding, Int. J. Heat Mass Trans. 75, 347-361 (2014). DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.078
  • [19] J.P. Holman, Heat Transfer, McGraw-Hill, New York (2010).
  • [20] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 1: The Basis, Butterworth-Heinemann, Linacre House, Oxford OX2 8DP, Jordan Hill (2000).
  • [21] B. Hadała, Z. Malinowski, T. Telejko, A. Szajding, A. Cebo-Rudnicka, Int. J. Therm. Sci. 136, 200-216 (2019). DOI: https://doi.org/10.1016/j.ijthermalsci.2018.10.026
  • [22] W.M. Lewandowski, E. Radziemska, M. Buzuk, H. Bieszk, Applied Energy 66,177-197 (2000). DOI: https://doi.org/10.1016/S0306-2619(99)00024-0
  • [23] T. Aihara, Y. Yamada, S. Endo, Int. J. Heat Mass Trans. 15, 2539-2549 (1972). DOI: https://doi.org/10.1016/0017-9310(72)90145-7
  • [24] C.G. Broyden, J. Inst. Math. Appl. 6, 222-231 (1970). DOI: https://doi.org/10.1093/imamat/6.3.222
  • [25] R. Fletcher, The Computer Journal 13, 317-322 (1970). DOI: https://doi.org/10.1093/comjnl/13.3.317
  • [26] D. Goldfarb, Math. Comput. 24, 23-26 (1970). DOI: https://doi.org/10.1090/S0025-5718-1970-0258249-6
  • [27] D.F. Shanno Math. Comput. 24, 647-656 (1970). DOI: https://doi.org/10.2307/2004840
  • [28] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77. The Art of Scentific Computing, Cambridge University Press, Cambridge (1992).
Uwagi
1. This work was supported by the regular activity of the Faculty of Metals Engineering and Industrial Computer Science of AGH University of Science and Technology (Work No. 16.16.110.663)
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b39fd8e9-3b1f-4967-8356-3d9aac097b00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.